These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 20028072)

  • 1. Nitrobenzene removal in bioelectrochemical systems.
    Mu Y; Rozendal RA; Rabaey K; Keller J
    Environ Sci Technol; 2009 Nov; 43(22):8690-5. PubMed ID: 20028072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioelectrochemical system for recalcitrant p-nitrophenol removal.
    Shen J; Feng C; Zhang Y; Jia F; Sun X; Li J; Han W; Wang L; Mu Y
    J Hazard Mater; 2012 Mar; 209-210():516-9. PubMed ID: 22277341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction.
    Wang AJ; Cui D; Cheng HY; Guo YQ; Kong FY; Ren NQ; Wu WM
    J Hazard Mater; 2012 Jan; 199-200():401-9. PubMed ID: 22152919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system.
    Mu Y; Radjenovic J; Shen J; Rozendal RA; Rabaey K; Keller J
    Environ Sci Technol; 2011 Jan; 45(2):782-8. PubMed ID: 21141818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover.
    Liang B; Cheng H; Van Nostrand JD; Ma J; Yu H; Kong D; Liu W; Ren N; Wu L; Wang A; Lee DJ; Zhou J
    Water Res; 2014 May; 54():137-48. PubMed ID: 24565804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High current generation coupled to caustic production using a lamellar bioelectrochemical system.
    Rabaey K; Bützer S; Brown S; Keller J; Rozendal RA
    Environ Sci Technol; 2010 Jun; 44(11):4315-21. PubMed ID: 20446659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decolorization of azo dyes in bioelectrochemical systems.
    Mu Y; Rabaey K; Rozendal RA; Yuan Z; Keller J
    Environ Sci Technol; 2009 Jul; 43(13):5137-43. PubMed ID: 19673319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical reduction of nitrobenzene at carbon nanotube electrode.
    Li YP; Cao HB; Liu CM; Zhang Y
    J Hazard Mater; 2007 Sep; 148(1-2):158-63. PubMed ID: 17374445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems.
    Wen Q; Yang T; Wang S; Chen Y; Cong L; Qu Y
    J Hazard Mater; 2013 Jan; 244-245():743-9. PubMed ID: 23183343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell.
    Lee HS; Rittmann BE
    Environ Sci Technol; 2010 Feb; 44(3):948-54. PubMed ID: 20030379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode.
    Wang AJ; Cheng HY; Liang B; Ren NQ; Cui D; Lin N; Kim BH; Rabaey K
    Environ Sci Technol; 2011 Dec; 45(23):10186-93. PubMed ID: 21985580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion.
    Cheng KY; Ho G; Cord-Ruwisch R
    Environ Sci Technol; 2011 Jan; 45(2):796-802. PubMed ID: 21142093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial fuel cells for simultaneous carbon and nitrogen removal.
    Virdis B; Rabaey K; Yuan Z; Keller J
    Water Res; 2008 Jun; 42(12):3013-24. PubMed ID: 18466949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells.
    Jia YH; Tran HT; Kim DH; Oh SJ; Park DH; Zhang RH; Ahn DH
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):315-21. PubMed ID: 17909860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems.
    Sleutels TH; Darus L; Hamelers HV; Buisman CJ
    Bioresour Technol; 2011 Dec; 102(24):11172-6. PubMed ID: 22004593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient removal of nitrobenzene and concomitant electricity production by single-chamber microbial fuel cells with activated carbon air-cathode.
    Zhang E; Wang F; Zhai W; Scott K; Wang X; Diao G
    Bioresour Technol; 2017 Apr; 229():111-118. PubMed ID: 28110227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of pH buffer requirement in bioelectrochemical systems.
    Sleutels TH; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Nov; 44(21):8259-63. PubMed ID: 20942476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells.
    Freguia S; Rabaey K; Yuan Z; Keller J
    Water Res; 2008 Mar; 42(6-7):1387-96. PubMed ID: 17996270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.