These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20028091)

  • 1. Ecological control of fecal indicator bacteria in an urban stream.
    Surbeck CQ; Jiang SC; Grant SB
    Environ Sci Technol; 2010 Jan; 44(2):631-7. PubMed ID: 20028091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland.
    Sanders BF; Arega F; Sutula M
    Water Res; 2005 Sep; 39(14):3394-408. PubMed ID: 16051310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meteorological effects on the levels of fecal indicator bacteria in an urban stream: a modeling approach.
    Cho KH; Cha SM; Kang JH; Lee SW; Park Y; Kim JW; Kim JH
    Water Res; 2010 Apr; 44(7):2189-202. PubMed ID: 20138642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loading of fecal indicator bacteria in North Carolina tidal creek headwaters: hydrographic patterns and terrestrial runoff relationships.
    Stumpf CH; Piehler MF; Thompson S; Noble RT
    Water Res; 2010 Sep; 44(16):4704-15. PubMed ID: 20673947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators.
    Haack SK; Duris JW; Fogarty LR; Kolpin DW; Focazio MJ; Furlong ET; Meyer MT
    J Environ Qual; 2009; 38(1):248-58. PubMed ID: 19141815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of chemical, molecular, and traditional markers of fecal contamination in an effluent dominated urban stream.
    Litton RM; Ahn JH; Sercu B; Holden PA; Sedlak DL; Grant SB
    Environ Sci Technol; 2010 Oct; 44(19):7369-75. PubMed ID: 20839837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of salinity mixing models to estimate the contribution of creek water fecal indicator bacteria to an estuarine environment: Newport Bay, California.
    McLaughlin K; Ahn JH; Litton RM; Grant SB
    Water Res; 2007 Aug; 41(16):3595-604. PubMed ID: 17597176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-quantitative evaluation of fecal contamination potential by human and ruminant sources using multiple lines of evidence.
    Stoeckel DM; Stelzer EA; Stogner RW; Mau DP
    Water Res; 2011 May; 45(10):3225-44. PubMed ID: 21513966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA.
    He LM; He ZL
    Water Res; 2008 May; 42(10-11):2563-73. PubMed ID: 18242661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of urbanization and agriculture on the occurrence of bacterial pathogens and stx genes in coastal waterbodies of central California.
    Walters SP; Thebo AL; Boehm AB
    Water Res; 2011 Feb; 45(4):1752-62. PubMed ID: 21168181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of fecal indicator bacteria (FIB) in the Ballona Wetlands saltwater marsh (Los Angeles County, California, USA) with implications for restoration actions.
    Dorsey JH; Carter PM; Bergquist S; Sagarin R
    Water Res; 2010 Aug; 44(15):4630-42. PubMed ID: 20591461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addressing uncertainty in fecal indicator bacteria dark inactivation rates.
    Gronewold AD; Myers L; Swall JL; Noble RT
    Water Res; 2011 Jan; 45(2):652-64. PubMed ID: 20843534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin to determine point from non-point source pollution.
    Fujioka RS
    Water Sci Technol; 2001; 44(7):181-8. PubMed ID: 11724486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents.
    Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL
    Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability of fecal indicator bacteria in flowing and ponded waters in southern California: implications for bacterial TMDL development and implementation.
    He LM; Lu J; Shi W
    Water Res; 2007 Jul; 41(14):3132-40. PubMed ID: 17543369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.
    Servais P; Garcia-Armisen T; George I; Billen G
    Sci Total Environ; 2007 Apr; 375(1-3):152-67. PubMed ID: 17239424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sources and growth dynamics of fecal indicator bacteria in a coastal wetland system and potential impacts to adjacent waters.
    Evanson M; Ambrose RF
    Water Res; 2006 Feb; 40(3):475-86. PubMed ID: 16386284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of indicator bacteria in Canyon Lake, California.
    Davis K; Anderson MA; Yates MV
    Water Res; 2005 Apr; 39(7):1277-88. PubMed ID: 15862327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fecal indicator bacteria and Salmonella in ponds managed as bird habitat, San Francisco Bay, California, USA.
    Shellenbarger GG; Athearn ND; Takekawa JY; Boehm AB
    Water Res; 2008 Jun; 42(12):2921-30. PubMed ID: 18457857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of an integrated community analysis approach for microbial source tracking in a coastal creek.
    Cao Y; Van De Werfhorst LC; Sercu B; Murray JL; Holden PA
    Environ Sci Technol; 2011 Sep; 45(17):7195-201. PubMed ID: 21786742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.