These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20028126)

  • 1. Fe(x)O(y)@C spheres as an excellent catalyst for Fischer-Tropsch synthesis.
    Yu G; Sun B; Pei Y; Xie S; Yan S; Qiao M; Fan K; Zhang X; Zong B
    J Am Chem Soc; 2010 Jan; 132(3):935-7. PubMed ID: 20028126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C).
    de Smit E; Cinquini F; Beale AM; Safonova OV; van Beek W; Sautet P; Weckhuysen BM
    J Am Chem Soc; 2010 Oct; 132(42):14928-41. PubMed ID: 20925335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron oxide and alumina nanocomposites applied to Fischer-Tropsch synthesis.
    Dong H; Xie M; Xu J; Li M; Peng L; Guo X; Ding W
    Chem Commun (Camb); 2011 Apr; 47(13):4019-21. PubMed ID: 21347472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst.
    Chen W; Fan Z; Pan X; Bao X
    J Am Chem Soc; 2008 Jul; 130(29):9414-9. PubMed ID: 18576652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relevance in the Fischer-Tropsch synthesis of the formation of Fe-O-Ce interactions on iron-cerium mixed oxide systems.
    Pérez-Alonso FJ; Granados ML; Ojeda M; Herranz T; Rojas S; Terreros P; Fierro JL; Gracia M; Gancedo JR
    J Phys Chem B; 2006 Nov; 110(47):23870-80. PubMed ID: 17125353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts.
    Xu J; Bartholomew CH
    J Phys Chem B; 2005 Feb; 109(6):2392-403. PubMed ID: 16851234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into CH(4) formation in iron-catalyzed Fischer-Tropsch synthesis.
    Huo CF; Li YW; Wang J; Jiao H
    J Am Chem Soc; 2009 Oct; 131(41):14713-21. PubMed ID: 19780531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Fabrication of BCN Nanosheet-Encapsulated Nano-Iron as Highly Stable Fischer-Tropsch Synthesis Catalyst.
    Wu J; Wang L; Lv B; Chen J
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14319-14327. PubMed ID: 28395134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic properties of nanoscale iron-doped zirconia solid-solution aerogels.
    Chen L; Hu J; Richards RM
    Chemphyschem; 2008 May; 9(7):1069-78. PubMed ID: 18404744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis.
    Yang C; Zhao H; Hou Y; Ma D
    J Am Chem Soc; 2012 Sep; 134(38):15814-21. PubMed ID: 22938192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance.
    Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM
    J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts.
    de Smit E; de Groot FM; Blume R; Hävecker M; Knop-Gericke A; Weckhuysen BM
    Phys Chem Chem Phys; 2010 Jan; 12(3):667-80. PubMed ID: 20066352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of Colloidal Iron Oxide Nanoparticles on Titania and Silica Support.
    Krans NA; van Uunen DL; Versluis C; Dugulan AI; Chai J; Hofmann JP; Hensen EJM; Zečević J; de Jong KP
    Chem Mater; 2020 Jun; 32(12):5226-5235. PubMed ID: 32595267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of silica/carbon-encapsulated core-shell spheres: templates for other unique core-shell structures and applications in in situ loading of noble-metal nanoparticles.
    Wan Y; Min YL; Yu SH
    Langmuir; 2008 May; 24(9):5024-8. PubMed ID: 18363416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis.
    Sun Z; Sun B; Qiao M; Wei J; Yue Q; Wang C; Deng Y; Kaliaguine S; Zhao D
    J Am Chem Soc; 2012 Oct; 134(42):17653-60. PubMed ID: 23020275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 1. The CNT-Fe/Co-MgO system.
    Coquay P; Peigney A; De Grave E; Flahaut E; Vandenberghe RE; Laurent C
    J Phys Chem B; 2005 Sep; 109(38):17813-24. PubMed ID: 16853284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron energy loss spectroscopy (EELS) of iron Fischer-Tropsch catalysts.
    Jin Y; Xu H; Datye AK
    Microsc Microanal; 2006 Apr; 12(2):124-34. PubMed ID: 17481348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres.
    Sun X; Liu J; Li Y
    Chemistry; 2006 Feb; 12(7):2039-47. PubMed ID: 16374888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine-assisted hydrothermal synthesis of peculiar porous alpha-Fe2O3 nanospheres with excellent gas-sensing properties.
    Chen H; Zhao Y; Yang M; He J; Chu PK; Zhang J; Wu S
    Anal Chim Acta; 2010 Feb; 659(1-2):266-73. PubMed ID: 20103134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.