These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2002839)

  • 21. Enzymatic desymmetrising redox reactions for the asymmetric synthesis of biaryl atropisomers.
    Staniland S; Yuan B; Giménez-Agulló N; Marcelli T; Willies SC; Grainger DM; Turner NJ; Clayden J
    Chemistry; 2014 Oct; 20(41):13084-8. PubMed ID: 25156181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic insights from reactions between copper(II)-phenoxyl complexes and substrates with activated C-H bonds.
    Pratt RC; Stack TD
    Inorg Chem; 2005 Apr; 44(7):2367-75. PubMed ID: 15792472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combinatorial approaches to functional models for galactose oxidase.
    Berkessel A; Dousset M; Bulat S; Glaubitz K
    Biol Chem; 2005 Oct; 386(10):1035-41. PubMed ID: 16218875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thiols as mechanistic probes for catalysis by the free radical enzyme galactose oxidase.
    Wachter RM; Branchaud BP
    Biochemistry; 1996 Nov; 35(45):14425-35. PubMed ID: 8916929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeted oxidase reactivity with a new redox-active ligand incorporating N2O2 donor atoms. Complexes of Cu(II), Ni(II), Pd(II), Fe(III), and V(V).
    Mukherjee C; Weyhermüller T; Bothe E; Chaudhuri P
    Inorg Chem; 2008 Dec; 47(24):11620-32. PubMed ID: 18998669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family.
    Yin DT; Urresti S; Lafond M; Johnston EM; Derikvand F; Ciano L; Berrin JG; Henrissat B; Walton PH; Davies GJ; Brumer H
    Nat Commun; 2015 Dec; 6():10197. PubMed ID: 26680532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Galactose oxidase models: tuning the properties of CuII-phenoxyl radicals.
    Philibert A; Thomas F; Philouze C; Hamman S; Saint-Aman E; Pierre JL
    Chemistry; 2003 Aug; 9(16):3803-12. PubMed ID: 12916104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model complexes for the active form of galactose oxidase. Physicochemical properties of Cu(II)- and Zn(II)-phenoxyl radical complexes.
    Itoh S; Taki M; Kumei H; Takayama S; Nagatomo S; Kitagawa T; Sakurada N; Arakawa R; Fukuzumi S
    Inorg Chem; 2000 Aug, 7; 39(16):3708-11. PubMed ID: 11196837
    [No Abstract]   [Full Text] [Related]  

  • 29. Structure of the oxidized active site of galactose oxidase from realistic in silico models.
    Rokhsana D; Dooley DM; Szilagyi RK
    J Am Chem Soc; 2006 Dec; 128(49):15550-1. PubMed ID: 17147339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of heme types in heme-copper oxidases: effects of replacing a heme b with a heme o mimic in an engineered heme-copper center in myoglobin.
    Wang N; Zhao X; Lu Y
    J Am Chem Soc; 2005 Nov; 127(47):16541-7. PubMed ID: 16305243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic models for heme-copper oxidases.
    Kim E; Chufán EE; Kamaraj K; Karlin KD
    Chem Rev; 2004 Feb; 104(2):1077-133. PubMed ID: 14871150
    [No Abstract]   [Full Text] [Related]  

  • 32. Resonance Raman, infrared, and EPR investigation on the binuclear site structure of the heme-copper ubiquinol oxidases from Acetobacter aceti: effect of the heme peripheral formyl group substitution.
    Tsubaki M; Matsushita K; Adachi O; Hirota S; Kitagawa T; Hori H
    Biochemistry; 1997 Oct; 36(42):13034-42. PubMed ID: 9335565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Galactose oxidase: probing radical mechanism with ultrafast radical probe.
    Branchaud BP; Turner BE
    Methods Enzymol; 2002; 354():415-25. PubMed ID: 12418243
    [No Abstract]   [Full Text] [Related]  

  • 34. The phenoxy/phenol/copper cation: a minimalistic model of bonding relations in active centers of mononuclear copper enzymes.
    Milko P; Roithová J; Schröder D; Lemaire J; Schwarz H; Holthausen MC
    Chemistry; 2008; 14(14):4318-27. PubMed ID: 18381738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Galactose Oxidase models: 19F NMR as a powerful tool to study the solution chemistry of tripodal ligands in the presence of copper(II).
    Michel F; Hamman S; Thomas F; Philouze C; Gautier-Luneau I; Pierre JL
    Chem Commun (Camb); 2006 Oct; (39):4122-4. PubMed ID: 17024269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidatively robust monophenolate-copper(II) complexes as potential models of galactose oxidase.
    Gebbink RJ; Watanabe M; Pratt RC; Stack TD
    Chem Commun (Camb); 2003 Mar; (5):630-1. PubMed ID: 12669859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stereoselective hydrogen abstraction by galactose oxidase.
    Minasian SG; Whittaker MM; Whittaker JW
    Biochemistry; 2004 Nov; 43(43):13683-93. PubMed ID: 15504031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biocatalytic desymmetrization of an atropisomer with both an enantioselective oxidase and ketoreductases.
    Yuan B; Page A; Worrall CP; Escalettes F; Willies SC; McDouall JJ; Turner NJ; Clayden J
    Angew Chem Int Ed Engl; 2010 Sep; 49(39):7010-3. PubMed ID: 20715245
    [No Abstract]   [Full Text] [Related]  

  • 39. Modification of galactose oxidase to introduce glucose 6-oxidase activity.
    Sun L; Bulter T; Alcalde M; Petrounia IP; Arnold FH
    Chembiochem; 2002 Aug; 3(8):781-3. PubMed ID: 12203977
    [No Abstract]   [Full Text] [Related]  

  • 40. Mimicking an enzyme in look and deed.
    Service RF
    Science; 1998 Jan; 279(5350):479-80. PubMed ID: 9454346
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.