These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Mechanistic insights from reactions between copper(II)-phenoxyl complexes and substrates with activated C-H bonds. Pratt RC; Stack TD Inorg Chem; 2005 Apr; 44(7):2367-75. PubMed ID: 15792472 [TBL] [Abstract][Full Text] [Related]
23. Combinatorial approaches to functional models for galactose oxidase. Berkessel A; Dousset M; Bulat S; Glaubitz K Biol Chem; 2005 Oct; 386(10):1035-41. PubMed ID: 16218875 [TBL] [Abstract][Full Text] [Related]
24. Thiols as mechanistic probes for catalysis by the free radical enzyme galactose oxidase. Wachter RM; Branchaud BP Biochemistry; 1996 Nov; 35(45):14425-35. PubMed ID: 8916929 [TBL] [Abstract][Full Text] [Related]
25. Targeted oxidase reactivity with a new redox-active ligand incorporating N2O2 donor atoms. Complexes of Cu(II), Ni(II), Pd(II), Fe(III), and V(V). Mukherjee C; Weyhermüller T; Bothe E; Chaudhuri P Inorg Chem; 2008 Dec; 47(24):11620-32. PubMed ID: 18998669 [TBL] [Abstract][Full Text] [Related]
26. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Yin DT; Urresti S; Lafond M; Johnston EM; Derikvand F; Ciano L; Berrin JG; Henrissat B; Walton PH; Davies GJ; Brumer H Nat Commun; 2015 Dec; 6():10197. PubMed ID: 26680532 [TBL] [Abstract][Full Text] [Related]
27. Galactose oxidase models: tuning the properties of CuII-phenoxyl radicals. Philibert A; Thomas F; Philouze C; Hamman S; Saint-Aman E; Pierre JL Chemistry; 2003 Aug; 9(16):3803-12. PubMed ID: 12916104 [TBL] [Abstract][Full Text] [Related]
28. Model complexes for the active form of galactose oxidase. Physicochemical properties of Cu(II)- and Zn(II)-phenoxyl radical complexes. Itoh S; Taki M; Kumei H; Takayama S; Nagatomo S; Kitagawa T; Sakurada N; Arakawa R; Fukuzumi S Inorg Chem; 2000 Aug, 7; 39(16):3708-11. PubMed ID: 11196837 [No Abstract] [Full Text] [Related]
29. Structure of the oxidized active site of galactose oxidase from realistic in silico models. Rokhsana D; Dooley DM; Szilagyi RK J Am Chem Soc; 2006 Dec; 128(49):15550-1. PubMed ID: 17147339 [TBL] [Abstract][Full Text] [Related]
30. Role of heme types in heme-copper oxidases: effects of replacing a heme b with a heme o mimic in an engineered heme-copper center in myoglobin. Wang N; Zhao X; Lu Y J Am Chem Soc; 2005 Nov; 127(47):16541-7. PubMed ID: 16305243 [TBL] [Abstract][Full Text] [Related]
32. Resonance Raman, infrared, and EPR investigation on the binuclear site structure of the heme-copper ubiquinol oxidases from Acetobacter aceti: effect of the heme peripheral formyl group substitution. Tsubaki M; Matsushita K; Adachi O; Hirota S; Kitagawa T; Hori H Biochemistry; 1997 Oct; 36(42):13034-42. PubMed ID: 9335565 [TBL] [Abstract][Full Text] [Related]
34. The phenoxy/phenol/copper cation: a minimalistic model of bonding relations in active centers of mononuclear copper enzymes. Milko P; Roithová J; Schröder D; Lemaire J; Schwarz H; Holthausen MC Chemistry; 2008; 14(14):4318-27. PubMed ID: 18381738 [TBL] [Abstract][Full Text] [Related]
35. Galactose Oxidase models: 19F NMR as a powerful tool to study the solution chemistry of tripodal ligands in the presence of copper(II). Michel F; Hamman S; Thomas F; Philouze C; Gautier-Luneau I; Pierre JL Chem Commun (Camb); 2006 Oct; (39):4122-4. PubMed ID: 17024269 [TBL] [Abstract][Full Text] [Related]