BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20028439)

  • 1. Production of 4-ethylphenol from 4-hydroxycinnamic acid by Lactobacillus sp. isolated from a swine waste lagoon.
    Kridelbaugh D; Hughes S; Allen T; Doerner KC
    J Appl Microbiol; 2010 Jul; 109(1):190-8. PubMed ID: 20028439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.
    Silva I; Campos FM; Hogg T; Couto JA
    J Appl Microbiol; 2011 Aug; 111(2):360-70. PubMed ID: 21575111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylphenol Formation by Lactobacillus plantarum: Identification of the Enzyme Involved in the Reduction of Vinylphenols.
    Santamaría L; Reverón I; de Felipe FL; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29934329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of 4-ethylphenol in alperujo by Lactobacillus pentosus.
    de Castro A; Asencio E; Ruiz-Méndez MV; Romero C; Brenes M
    J Sci Food Agric; 2015 Aug; 95(11):2222-7. PubMed ID: 25267118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation.
    van Beek S; Priest FG
    Appl Environ Microbiol; 2000 Dec; 66(12):5322-8. PubMed ID: 11097909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of volatile phenols by Lactobacillus plantarum in wine conditions.
    Fras P; Campos FM; Hogg T; Couto JA
    Biotechnol Lett; 2014 Feb; 36(2):281-5. PubMed ID: 24068507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Determinants of Hydroxycinnamic Acid Metabolism in Heterofermentative Lactobacilli.
    Gaur G; Oh JH; Filannino P; Gobbetti M; van Pijkeren JP; Gänzle MG
    Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids.
    de las Rivas B; Rodríguez H; Curiel JA; Landete JM; Muñoz R
    J Agric Food Chem; 2009 Jan; 57(2):490-4. PubMed ID: 19099460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catabolism of hydroxycinnamic acids in contact with probiotic Lactobacillus.
    Rogozinska M; Korsak D; Mroczek J; Biesaga M
    J Appl Microbiol; 2021 Sep; 131(3):1464-1473. PubMed ID: 33470026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal changes in the microbial community in an anaerobic swine waste treatment lagoon.
    Cook KL; Rothrock MJ; Lovanh N; Sorrell JK; Loughrin JH
    Anaerobe; 2010 Apr; 16(2):74-82. PubMed ID: 19539043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survey of enzyme activity responsible for phenolic off-flavour production by Dekkera and Brettanomyces yeast.
    Harris V; Ford CM; Jiranek V; Grbin PR
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1117-27. PubMed ID: 18839169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for estimating Dekkera/Brettanomyces populations in wines.
    Benito S; Palomero F; Morata A; Calderón F; Suárez-Lepe JA
    J Appl Microbiol; 2009 May; 106(5):1743-51. PubMed ID: 19226397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.
    Filannino P; Gobbetti M; De Angelis M; Di Cagno R
    Appl Environ Microbiol; 2014 Dec; 80(24):7574-82. PubMed ID: 25261518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxycinnamic acid ethyl esters as precursors to ethylphenols in wine.
    Hixson JL; Sleep NR; Capone DL; Elsey GM; Curtin CD; Sefton MA; Taylor DK
    J Agric Food Chem; 2012 Mar; 60(9):2293-8. PubMed ID: 22324721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of hydroxycinnamic acids by Furfurilactobacillus milii in sorghum fermentations: Impact on profile of phenolic compounds in sorghum and on ecological fitness of Ff. milii.
    Gaur G; Damm S; Passon M; Lo HK; Schieber A; Gänzle MG
    Food Microbiol; 2023 May; 111():104206. PubMed ID: 36681402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2.
    Covre EA; Silva LFL; Bastos RG; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2019 Aug; 35(9):136. PubMed ID: 31432249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1.
    Su Y; Yao W; Perez-Gutierrez ON; Smidt H; Zhu WY
    Anaerobe; 2008 Apr; 14(2):78-86. PubMed ID: 18272412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and advances in biotechnological approaches for the synthesis of canolol and other vinylphenols from biobased p-hydroxycinnamic acids: a review.
    Lomascolo A; Odinot E; Villeneuve P; Lecomte J
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):173. PubMed ID: 37964324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of 4-ethylphenol production in red wines using HCDC+ yeasts and cinnamyl esterases.
    Morata A; Vejarano R; Ridolfi G; Benito S; Palomero F; Uthurry C; Tesfaye W; González C; Suárez-Lepe JA
    Enzyme Microb Technol; 2013 Feb; 52(2):99-104. PubMed ID: 23273278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and molecular comparison with dairy-related Lactobacillus helveticus strains.
    Jensen MP; Ardö Y; Vogensen FK
    Lett Appl Microbiol; 2009 Sep; 49(3):396-402. PubMed ID: 19627475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.