These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2002845)

  • 1. Light-induced suppression of endogenous circadian amplitude in humans.
    Jewett ME; Kronauer RE; Czeisler CA
    Nature; 1991 Mar; 350(6313):59-62. PubMed ID: 2002845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melatonin rhythm observed throughout a three-cycle bright-light stimulus designed to reset the human circadian pacemaker.
    Shanahan TL; Kronauer RE; Duffy JF; Williams GH; Czeisler CA
    J Biol Rhythms; 1999 Jun; 14(3):237-53. PubMed ID: 10452336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-response relationships for resetting of human circadian clock by light.
    Boivin DB; Duffy JF; Kronauer RE; Czeisler CA
    Nature; 1996 Feb; 379(6565):540-2. PubMed ID: 8596632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-amplitude resetting of the human circadian pacemaker via bright light: a further analysis.
    Jewett ME; Kronauer RE; Czeisler CA
    J Biol Rhythms; 1994; 9(3-4):295-314. PubMed ID: 7772797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters.
    Landry GJ; Mistlberger RE
    Brain Res; 2005 Oct; 1059(1):52-8. PubMed ID: 16169532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low amplitude entrainment of mice and the impact of circadian phase on behavior tests.
    Beeler JA; Prendergast B; Zhuang X
    Physiol Behav; 2006 May; 87(5):870-80. PubMed ID: 16600314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus.
    Duncan MJ; Franklin KM; Davis VA; Grossman GH; Knoch ME; Glass JD
    Eur J Neurosci; 2005 Nov; 22(9):2306-14. PubMed ID: 16262668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melanopsin-dependent photo-perturbation reveals desynchronization underlying the singularity of mammalian circadian clocks.
    Ukai H; Kobayashi TJ; Nagano M; Masumoto KH; Sujino M; Kondo T; Yagita K; Shigeyoshi Y; Ueda HR
    Nat Cell Biol; 2007 Nov; 9(11):1327-34. PubMed ID: 17952058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of exogenous melatonin and circadian synchronization on tumor progression in melanoma-bearing C57BL6 mice.
    Otálora BB; Madrid JA; Alvarez N; Vicente V; Rol MA
    J Pineal Res; 2008 Apr; 44(3):307-15. PubMed ID: 18339126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian effects of light no brighter than moonlight.
    Evans JA; Elliott JA; Gorman MR
    J Biol Rhythms; 2007 Aug; 22(4):356-67. PubMed ID: 17660452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplitude of circadian oscillations entrained by 24-h light-dark cycles.
    Kurosawa G; Goldbeter A
    J Theor Biol; 2006 Sep; 242(2):478-88. PubMed ID: 16678857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute exposure to 2G phase shifts the rat circadian timing system.
    Hoban-Higgins TM; Murakami DM; Tandon T; Fuller CA
    J Gravit Physiol; 1995; 2(1):P58-9. PubMed ID: 11538933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Starting, stopping, and resetting biological oscillators: in search of optimum perturbations.
    Forger DB; Paydarfar D
    J Theor Biol; 2004 Oct; 230(4):521-32. PubMed ID: 15363673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of light on the human circadian pacemaker.
    Czeisler CA
    Ciba Found Symp; 1995; 183():254-90; discussion 290-302. PubMed ID: 7656689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpreting the human phase response curve to multiple bright-light exposures.
    Strogatz SH
    J Biol Rhythms; 1990; 5(2):169-74. PubMed ID: 2133126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily light exposure in morning-type and evening-type individuals.
    Goulet G; Mongrain V; Desrosiers C; Paquet J; Dumont M
    J Biol Rhythms; 2007 Apr; 22(2):151-8. PubMed ID: 17440216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal illumination phase shifts the circadian rhythm of serotonin N-acetyltransferase activity in the chicken pineal gland.
    Zawilska JB; Berezińska M; Lorenc A; Skene DJ; Nowak JZ
    Neurosci Lett; 2004 Apr; 360(3):153-6. PubMed ID: 15082156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone.
    Khalsa SBS ; Jewett ME; Duffy JF; Czeisler CA
    J Biol Rhythms; 2000 Dec; 15(6):524-30. PubMed ID: 11106069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A circadian system is involved in photoperiodic entrainment of the circannual rhythm of Anthrenus verbasci.
    Miyazaki Y; Nisimura T; Numata H
    J Insect Physiol; 2009 May; 55(5):494-8. PubMed ID: 19133269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.