These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 20028614)

  • 41. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea.
    Bhalla PL; Singh MB
    Nat Protoc; 2008; 3(2):181-9. PubMed ID: 18274519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variable pollen viability and effects of pollen load size on components of seed set in cultivars and feral populations of oilseed rape.
    Lankinen Å; Lindström SAM; D'Hertefeldt T
    PLoS One; 2018; 13(9):e0204407. PubMed ID: 30235318
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of maximum potential gene flow from herbicide resistant Brassica napus to its male sterile relatives under open and wind pollination conditions.
    Zhang CJ; Yook MJ; Park HR; Lim SH; Kim JW; Song JS; Nah G; Song HR; Jo BH; Roh KH; Park S; Jang YS; Noua IS; Kim DS
    Sci Total Environ; 2018 Sep; 634():821-830. PubMed ID: 29653426
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pollen-mediated gene flow in maize in real situations of coexistence.
    Messeguer J; Peñas G; Ballester J; Bas M; Serra J; Salvia J; Palaudelmàs M; Melé E
    Plant Biotechnol J; 2006 Nov; 4(6):633-45. PubMed ID: 17309734
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes.
    Halfhill MD; Sutherland JP; Moon HS; Poppy GM; Warwick SI; Weissinger AK; Rufty TW; Raymer PL; Stewart CN
    Mol Ecol; 2005 Sep; 14(10):3177-89. PubMed ID: 16101783
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessing gene flow in apple using a descendant of Malus sieversii var. sieversii f. niedzwetzkyana as an identifier for pollen dispersal.
    Reim S; Flachowsky H; Michael M; Hanke MV
    Environ Biosafety Res; 2006; 5(2):89-104. PubMed ID: 17328855
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring the occurrence of genetically modified oilseed rape growing along a Japanese roadside: 3-year observations.
    Nishizawa T; Nakajima N; Aono M; Tamaoki M; Kubo A; Saji H
    Environ Biosafety Res; 2009; 8(1):33-44. PubMed ID: 19419652
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Innate factors causing differences in gene flow frequency from transgenic rice to different weedy rice biotypes.
    Zuo J; Zhang L; Song X; Dai W; Qiang S
    Pest Manag Sci; 2011 Jun; 67(6):677-90. PubMed ID: 21337674
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gene expression during seed maturation in Brassica napus in relation to the induction of secondary dormancy.
    Fei H; Tsang E; Cutler AJ
    Genomics; 2007 Mar; 89(3):419-28. PubMed ID: 17207603
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessment of potential environmental risks of transgene flow in smallholder farming systems in Asia: Brassica napus as a case study in Korea.
    Zhang CJ; Yook MJ; Park HR; Lim SH; Kim JW; Nah G; Song HR; Jo BH; Roh KH; Park S; Kim DS
    Sci Total Environ; 2018 Nov; 640-641():688-695. PubMed ID: 29870945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Seed bank persistence of genetically modified canola in California.
    Munier DJ; Brittan KL; Lanini WT
    Environ Sci Pollut Res Int; 2012 Jul; 19(6):2281-4. PubMed ID: 22258428
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in the relative abundance and movement of insect pollinators during the flowering cycle of Brassica rapa crops: implications for gene flow.
    Mesa LA; Howlett BG; Grant JE; Didham RK
    J Insect Sci; 2013; 13():13. PubMed ID: 23937538
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene flow in genetically modified wheat.
    Rieben S; Kalinina O; Schmid B; Zeller SL
    PLoS One; 2011; 6(12):e29730. PubMed ID: 22216349
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sub-lethal glyphosate exposure alters flowering phenology and causes transient male-sterility in Brassica spp.
    Londo JP; McKinney J; Schwartz M; Bollman M; Sagers C; Watrud L
    BMC Plant Biol; 2014 Mar; 14():70. PubMed ID: 24655547
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of flowering time and distance between pollen source and recipient on maize.
    Nieh SC; Lin WS; Hsu YH; Shieh GJ; Kuo BJ
    GM Crops Food; 2014; 5(4):287-95. PubMed ID: 25523174
    [TBL] [Abstract][Full Text] [Related]  

  • 56. GIS assessment of the risk of gene flow from Brassica napus to its wild relatives in China.
    Dong JJ; Zhang MG; Wei W; Ma KP; Wang YH
    Environ Monit Assess; 2018 Jun; 190(7):405. PubMed ID: 29907889
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hybridization between GM soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. et Zucc.) under field conditions in Japan.
    Mizuguti A; Ohigashi K; Yoshimura Y; Kaga A; Kuroda Y; Matsuo K
    Environ Biosafety Res; 2010; 9(1):13-23. PubMed ID: 21122483
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthetic Brassica napus L.: development and studies on morphological characters, yield attributes, and yield.
    Malek MA; Ismail MR; Rafii MY; Rahman M
    ScientificWorldJournal; 2012; 2012():416901. PubMed ID: 22701356
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential impact of genetically modified Lepidoptera-resistant Brassica napus in biodiversity hotspots: Sicily as a theoretical model.
    Manachini B; Bazan G; Schicchi R
    Insect Sci; 2018 Aug; 25(4):562-580. PubMed ID: 29536624
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the potential strength and consequences for nonrandom gene flow caused by local adaptation in flowering time.
    Weis AE
    J Evol Biol; 2015 Mar; 28(3):699-714. PubMed ID: 25728931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.