BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20029110)

  • 1. Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins.
    Giachini L; Veronesi G; Francia F; Venturoli G; Boscherini F
    J Synchrotron Radiat; 2010 Jan; 17(1):41-52. PubMed ID: 20029110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a black-box for biological EXAFS data analysis. II. Automatic BioXAS Refinement and Analysis (ABRA).
    Wellenreuther G; Parthasarathy V; Meyer-Klaucke W
    J Synchrotron Radiat; 2010 Jan; 17(1):25-35. PubMed ID: 20029108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc cysteine active sites of metalloproteins: a density functional theory and x-ray absorption fine structure study.
    Dimakis N; Farooqi MJ; Garza ES; Bunker G
    J Chem Phys; 2008 Mar; 128(11):115104. PubMed ID: 18361619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined use of XAFS and crystallography for studying protein-ligand interactions in metalloproteins.
    Strange RW; Hasnain SS
    Methods Mol Biol; 2005; 305():167-96. PubMed ID: 15939998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico identification of putative metal binding motifs.
    Thilakaraj R; Raghunathan K; Anishetty S; Pennathur G
    Bioinformatics; 2007 Feb; 23(3):267-71. PubMed ID: 17148509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. XAFS spectral analysis of the cadmium coordination geometry in cadmium thiolate clusters in metallothionein.
    Chan J; Merrifield ME; Soldatov AV; Stillman MJ
    Inorg Chem; 2005 Jul; 44(14):4923-33. PubMed ID: 15998019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of zinc-binding sites in proteins from sequence.
    Shu N; Zhou T; Hovmöller S
    Bioinformatics; 2008 Mar; 24(6):775-82. PubMed ID: 18245129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal protein interactions.
    Sarkar B
    Prog Food Nutr Sci; 1987; 11(3-4):363-400. PubMed ID: 3328221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D local structure around Zn in Kti11p as a representative Zn-(Cys)4 motif as obtained by MXAN.
    Yu M; Yang F; Chu W; Wang Y; Zhao H; Gao B; Zhao W; Sun J; Wu F; Zhang X; Shi Y; Wu Z
    Biochem Biophys Res Commun; 2008 Sep; 374(1):28-32. PubMed ID: 18606152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic analysis of metal-ion binding to human ubiquitin.
    Arnesano F; Belviso BD; Caliandro R; Falini G; Fermani S; Natile G; Siliqi D
    Chemistry; 2011 Feb; 17(5):1569-78. PubMed ID: 21268159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I; Sikić M; Tomić S
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Zn in the interplay among Langmuir-Blodgett multilayer and myelin basic protein: a quantitative analysis of XANES spectra.
    Benfatto M; Della Longa S; Qin Y; Li Q; Pan G; Wu Z; Morante S
    Biophys Chem; 2004 Jul; 110(1-2):191-201. PubMed ID: 15223154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural adaptability of zinc binding sites: different structures in partially, fully, and heavy-metal loaded states.
    Heinz U; Hemmingsen L; Kiefer M; Adolph HW
    Chemistry; 2009 Jul; 15(30):7350-8. PubMed ID: 19551786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local structure investigation of the active site of the imidazolonepropionase from Bacillus subtilis by XANES spectroscopy and ab initio calculations.
    Yang F; Chu W; Yu M; Wang Y; Ma S; Dong Y; Wu Z
    J Synchrotron Radiat; 2008 Mar; 15(Pt 2):129-33. PubMed ID: 18296777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of zinc-ligand bond lengths in metalloproteins: trends and patterns.
    Tamames B; Sousa SF; Tamames J; Fernandes PA; Ramos MJ
    Proteins; 2007 Nov; 69(3):466-75. PubMed ID: 17623850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended X-ray absorption fine structure evidence for a single metal binding domain in Xenopus laevis nucleotide excision repair protein XPA.
    Buchko GW; Iakoucheva LM; Kennedy MA; Ackerman EJ; Hess NJ
    Biochem Biophys Res Commun; 1999 Jan; 254(1):109-13. PubMed ID: 9920741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Zinc proteome: a tale of stability and functionality.
    Sousa SF; Lopes AB; Fernandes PA; Ramos MJ
    Dalton Trans; 2009 Oct; (38):7946-56. PubMed ID: 19771357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II.
    Vogel A; Schilling O; Meyer-Klaucke W
    Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc(II) complexes of ubiquitin: speciation, affinity and binding features.
    Arena G; Fattorusso R; Grasso G; Grasso GI; Isernia C; Malgieri G; Milardi D; Rizzarelli E
    Chemistry; 2011 Oct; 17(41):11596-603. PubMed ID: 21953931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.