BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 20029962)

  • 1. P2X7 receptors mediate ischemic damage to oligodendrocytes.
    Domercq M; Perez-Samartin A; Aparicio D; Alberdi E; Pampliega O; Matute C
    Glia; 2010 Apr; 58(6):730-40. PubMed ID: 20029962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Downregulation of P2X7 receptor expression in rat oligodendrocyte precursor cells after hypoxia ischemia.
    Wang LY; Cai WQ; Chen PH; Deng QY; Zhao CM
    Glia; 2009 Feb; 57(3):307-19. PubMed ID: 18942747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis.
    Matute C; Torre I; Pérez-Cerdá F; Pérez-Samartín A; Alberdi E; Etxebarria E; Arranz AM; Ravid R; Rodríguez-Antigüedad A; Sánchez-Gómez M; Domercq M
    J Neurosci; 2007 Aug; 27(35):9525-33. PubMed ID: 17728465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supersensitivity of P2X receptors in cerebrocortical cell cultures after in vitro ischemia.
    Wirkner K; Köfalvi A; Fischer W; Günther A; Franke H; Gröger-Arndt H; Nörenberg W; Madarász E; Vizi ES; Schneider D; Sperlágh B; Illes P
    J Neurochem; 2005 Dec; 95(5):1421-37. PubMed ID: 16313518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TASK-1 channels in oligodendrocytes: a role in ischemia mediated disruption.
    Hawkins V; Butt A
    Neurobiol Dis; 2013 Jul; 55(100):87-94. PubMed ID: 23567653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.
    Cisneros-Mejorado A; Gottlieb M; Cavaliere F; Magnus T; Koch-Nolte F; Scemes E; Pérez-Samartín A; Matute C
    J Cereb Blood Flow Metab; 2015 May; 35(5):843-50. PubMed ID: 25605289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia.
    Arbeloa J; Pérez-Samartín A; Gottlieb M; Matute C
    Neurobiol Dis; 2012 Mar; 45(3):954-61. PubMed ID: 22186422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia.
    Zhang XF; Han P; Faltynek CR; Jarvis MF; Shieh CC
    Brain Res; 2005 Aug; 1052(1):63-70. PubMed ID: 16005856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P2X7 receptors in oligodendrocytes: a novel target for neuroprotection.
    Matute C
    Mol Neurobiol; 2008 Oct; 38(2):123-8. PubMed ID: 18704769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter.
    Tekkök SB; Goldberg MP
    J Neurosci; 2001 Jun; 21(12):4237-48. PubMed ID: 11404409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca(2+)-dependent reduction of glutamate aspartate transporter GLAST expression in astrocytes by P2X(7) receptor-mediated phosphoinositide 3-kinase signaling.
    Liu YP; Yang CS; Chen MC; Sun SH; Tzeng SF
    J Neurochem; 2010 Apr; 113(1):213-27. PubMed ID: 20070863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P2X7 R-mediated Ca(2+) -independent d-serine release via pannexin-1 of the P2X7 R-pannexin-1 complex in astrocytes.
    Pan HC; Chou YC; Sun SH
    Glia; 2015 May; 63(5):877-93. PubMed ID: 25630251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zn2+ -induced ERK activation mediates PARP-1-dependent ischemic-reoxygenation damage to oligodendrocytes.
    Domercq M; Mato S; Soria FN; Sánchez-gómez MV; Alberdi E; Matute C
    Glia; 2013 Mar; 61(3):383-93. PubMed ID: 23281060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: a quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation.
    Rundén-Pran E; Tansø R; Haug FM; Ottersen OP; Ring A
    Neuroscience; 2005; 136(3):795-810. PubMed ID: 16344152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional significance of the negative-feedback regulation of ATP release via pannexin-1 hemichannels under ischemic stress in astrocytes.
    Iwabuchi S; Kawahara K
    Neurochem Int; 2011 Feb; 58(3):376-84. PubMed ID: 21185900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anoxic depolarization of hippocampal astrocytes: possible modulation by P2X7 receptors.
    Leichsenring A; Riedel T; Qin Y; Rubini P; Illes P
    Neurochem Int; 2013 Jan; 62(1):15-22. PubMed ID: 23147683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Coupling between the P2X
    Inoue H; Kuroda H; Ofusa W; Oyama S; Kimura M; Ichinohe T; Shibukawa Y
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34205953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purinergic signalling in brain ischemia.
    Pedata F; Dettori I; Coppi E; Melani A; Fusco I; Corradetti R; Pugliese AM
    Neuropharmacology; 2016 May; 104():105-30. PubMed ID: 26581499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro.
    Schock SC; Leblanc D; Hakim AM; Thompson CS
    Biochem Biophys Res Commun; 2008 Mar; 368(1):138-44. PubMed ID: 18211823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia.
    Micu I; Jiang Q; Coderre E; Ridsdale A; Zhang L; Woulfe J; Yin X; Trapp BD; McRory JE; Rehak R; Zamponi GW; Wang W; Stys PK
    Nature; 2006 Feb; 439(7079):988-92. PubMed ID: 16372019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.