These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 20030360)
1. Rapid nanoimprinting and excellent piezoresponse of polymeric ferroelectric nanostructures. Liu Y; Weiss DN; Li J ACS Nano; 2010 Jan; 4(1):83-90. PubMed ID: 20030360 [TBL] [Abstract][Full Text] [Related]
2. Chemically cross-linked thin poly(vinylidene fluoride-co-trifluoroethylene)films for nonvolatile ferroelectric polymer memory. Shin YJ; Kang SJ; Jung HJ; Park YJ; Bae I; Choi DH; Park C ACS Appl Mater Interfaces; 2011 Feb; 3(2):582-9. PubMed ID: 21302914 [TBL] [Abstract][Full Text] [Related]
3. Excellent ferroelectricity of thin poly(vinylidene fluoride-trifluoroethylene) copolymer films and low voltage operation of capacitors and diodes. Fujisaki S; Fujisaki Y; Ishiwara H IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2592-4. PubMed ID: 18276561 [TBL] [Abstract][Full Text] [Related]
4. Dielectric relaxation of relaxor ferroelectric P(VDF-TrFE-CFE) terpolymer over broad frequency range. Wang Y; Lu SG; Lanagan M; Zhang Q IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):444-9. PubMed ID: 19411205 [TBL] [Abstract][Full Text] [Related]
5. Solvent vapor annealing of ferroelectric P(VDF-TrFE) thin films. Hu J; Zhang J; Fu Z; Jiang Y; Ding S; Zhu G ACS Appl Mater Interfaces; 2014 Oct; 6(20):18312-8. PubMed ID: 25243461 [TBL] [Abstract][Full Text] [Related]
6. Nonvolatile memory devices based on few-layer graphene films. Doh YJ; Yi GC Nanotechnology; 2010 Mar; 21(10):105204. PubMed ID: 20160337 [TBL] [Abstract][Full Text] [Related]
7. Structural dependence of phase transition and dielectric relaxation in ferroelectric poly(vinylidene fluoride-chlorotrifluoroethylene-trifluoroethylene)s. Lu Y; Claude J; Norena-Franco LE; Wang Q J Phys Chem B; 2008 Aug; 112(34):10411-6. PubMed ID: 18681471 [TBL] [Abstract][Full Text] [Related]
8. Understanding crystallization features of P(VDF-TrFE) copolymers under confinement to optimize ferroelectricity in nanostructures. García-Gutiérrez MC; Linares A; Martín-Fabiani I; Hernández JJ; Soccio M; Rueda DR; Ezquerra TA; Reynolds M Nanoscale; 2013 Jul; 5(13):6006-12. PubMed ID: 23712559 [TBL] [Abstract][Full Text] [Related]
9. Re-evaluation of the origin of relaxor ferroelectricity in vinylidene fluoride terpolymers: An approach using switching current measurements. Tsutsumi N; Okumachi K; Kinashi K; Sakai W Sci Rep; 2017 Nov; 7(1):15871. PubMed ID: 29158594 [TBL] [Abstract][Full Text] [Related]
10. P(VDF-TrFE) ferroelectric nanotube array for high energy density capacitor applications. Li X; Lim YF; Yao K; Tay FE; Seah KH Phys Chem Chem Phys; 2013 Jan; 15(2):515-20. PubMed ID: 23171985 [TBL] [Abstract][Full Text] [Related]
13. H/D isotopic exchange in water interactions with the ferroelectric copolymer: Poly(vinylidene fluoride-trifluoroethylene) (70%:30%). Rosa LG; Yakovkin IN; Dowben PA J Phys Chem B; 2005 Jul; 109(29):14189-97. PubMed ID: 16852782 [TBL] [Abstract][Full Text] [Related]
14. A nonvolatile memory device made of a ferroelectric polymer gate nanodot and a single-walled carbon nanotube. Son JY; Ryu S; Park YC; Lim YT; Shin YS; Shin YH; Jang HM ACS Nano; 2010 Dec; 4(12):7315-20. PubMed ID: 21050014 [TBL] [Abstract][Full Text] [Related]