BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20030633)

  • 1. Mode of action considerations in the quantitative assessment of tumour responses in the liver.
    Boobis AR
    Basic Clin Pharmacol Toxicol; 2010 Mar; 106(3):173-9. PubMed ID: 20030633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroform mode of action: implications for cancer risk assessment.
    Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a quantitative model incorporating key events in a hepatotoxic mode of action to predict tumor incidence.
    Luke NS; Sams R; DeVito MJ; Conolly RB; El-Masri HA
    Toxicol Sci; 2010 May; 115(1):253-66. PubMed ID: 20106946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform.
    Liao KH; Tan YM; Conolly RB; Borghoff SJ; Gargas ML; Andersen ME; Clewell HJ
    Risk Anal; 2007 Dec; 27(6):1535-51. PubMed ID: 18093051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive tolerance in mice upon subchronic exposure to chloroform: Increased exhalation and target tissue regeneration.
    Anand SS; Philip BK; Palkar PS; Mumtaz MM; Latendresse JR; Mehendale HM
    Toxicol Appl Pharmacol; 2006 Jun; 213(3):267-81. PubMed ID: 16630638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of chloroform by cytochrome P450 2E1 is required for induction of toxicity in the liver, kidney, and nose of male mice.
    Constan AA; Sprankle CS; Peters JM; Kedderis GL; Everitt JI; Wong BA; Gonzalez FL; Butterworth BE
    Toxicol Appl Pharmacol; 1999 Oct; 160(2):120-6. PubMed ID: 10527910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carcinogenicity and mode of action evaluation for alpha-hexachlorocyclohexane: Implications for human health risk assessment.
    Bradley AE; Shoenfelt JL; Durda JL
    Regul Toxicol Pharmacol; 2016 Apr; 76():152-73. PubMed ID: 26713892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement and validation of a medium-term gpt delta rat model for predicting chemical carcinogenicity and underlying mode of action.
    Matsushita K; Kuroda K; Ishii Y; Takasu S; Kijima A; Kawaguchi H; Miyoshi N; Nohmi T; Ogawa K; Nishikawa A; Umemura T
    Exp Toxicol Pathol; 2014 Sep; 66(7):313-21. PubMed ID: 24929978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strategy for establishing mode of action of chemical carcinogens as a guide for approaches to risk assessments.
    Butterworth BE; Conolly RB; Morgan KT
    Cancer Lett; 1995 Jun; 93(1):129-46. PubMed ID: 7600540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benzo[a]pyrene-induced transcriptomic responses in primary hepatocytes and in vivo liver: toxicokinetics is essential for in vivo-in vitro comparisons.
    van Kesteren PC; Zwart PE; Schaap MM; Pronk TE; van Herwijnen MH; Kleinjans JC; Bokkers BG; Godschalk RW; Zeilmaker MJ; van Steeg H; Luijten M
    Arch Toxicol; 2013 Mar; 87(3):505-15. PubMed ID: 23052197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biologically based dose response model for hepatic toxicity: a mechanistically based replacement for traditional estimates of noncancer risk.
    Conolly RB; Butterworth BE
    Toxicol Lett; 1995 Dec; 82-83():901-6. PubMed ID: 8597160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of an updated physiologically based pharmacokinetic model for chloroform to evaluate CYP2E1-mediated renal toxicity in rats and mice.
    Sasso AF; Schlosser PM; Kedderis GL; Genter MB; Snawder JE; Li Z; Rieth S; Lipscomb JC
    Toxicol Sci; 2013 Feb; 131(2):360-74. PubMed ID: 23143927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk assessment of inhaled chloroform based on its mode of action.
    Wolf DC; Butterworth BE
    Toxicol Pathol; 1997; 25(1):49-52. PubMed ID: 9061851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lessons learned in applying the U.S. EPA proposed cancer guidelines to specific compounds.
    Andersen ME; Meek ME; Boorman GA; Brusick DJ; Cohen SM; Dragan YP; Frederick CB; Goodman JI; Hard GC; O'Flaherty EJ; Robinson DE
    Toxicol Sci; 2000 Feb; 53(2):159-72. PubMed ID: 10696764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trichloroethylene cancer risk: simplified calculation of PBPK-based MCLs for cytotoxic end points.
    Bogen KT; Gold LS
    Regul Toxicol Pharmacol; 1997 Feb; 25(1):26-42. PubMed ID: 9056499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concordance of transcriptional and apical benchmark dose levels for conazole-induced liver effects in mice.
    Bhat VS; Hester SD; Nesnow S; Eastmond DA
    Toxicol Sci; 2013 Nov; 136(1):205-15. PubMed ID: 23970803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactivation, toxicokinetics and acute effects of chloroform in Fisher 344 and Osborne Mendel male rats.
    Gemma S; Testai E; Chieco P; Vittozzi L
    J Appl Toxicol; 2004; 24(3):203-10. PubMed ID: 15211614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inhalation exposure of carbon tetrachloride promote rat liver carcinogenesis in a medium-term liver bioassay.
    Tsujimura K; Ichinose F; Hara T; Yamasaki K; Otsuka M; Fukushima S
    Toxicol Lett; 2008 Feb; 176(3):207-14. PubMed ID: 18221844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of carcinogenic risk based on mode of drug action.
    Fujii T
    J Toxicol Sci; 1995 Sep; 20(4):459-61. PubMed ID: 8531241
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.