These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
531 related articles for article (PubMed ID: 20031214)
1. Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Backor M; Peksa O; Skaloud P; Backorová M Ecotoxicol Environ Saf; 2010 May; 73(4):603-12. PubMed ID: 20031214 [TBL] [Abstract][Full Text] [Related]
2. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Peksa O; Skaloud P Mol Ecol; 2011 Sep; 20(18):3936-48. PubMed ID: 21699598 [TBL] [Abstract][Full Text] [Related]
3. Lichen-forming fungi in postindustrial habitats involve alternative photobionts. Osyczka P; Lenart-Boroń A; Boroń P; Rola K Mycologia; 2021; 113(1):43-55. PubMed ID: 33146594 [TBL] [Abstract][Full Text] [Related]
4. Fine structure and phylogeny of green algal photobionts in the microfilamentous genus Psoroglaena (Verrucariaceae, lichen-forming ascomycetes). Nyati S; Beck A; Honegger R Plant Biol (Stuttg); 2007 May; 9(3):390-9. PubMed ID: 17099847 [TBL] [Abstract][Full Text] [Related]
5. Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. Cordeiro LM; Reis RA; Cruz LM; Stocker-Wörgötter E; MartinGrube ; Iacomini M FEMS Microbiol Ecol; 2005 Nov; 54(3):381-90. PubMed ID: 16332336 [TBL] [Abstract][Full Text] [Related]
6. A combined molecular and morphological approach to species delimitation in black-fruited, endolithic Caloplaca: high genetic and low morphological diversity. Muggia L; Grube M; Tretiach M Mycol Res; 2008 Jan; 112(Pt 1):36-49. PubMed ID: 18222679 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Skaloud P; Peksa O Mol Phylogenet Evol; 2010 Jan; 54(1):36-46. PubMed ID: 19853051 [TBL] [Abstract][Full Text] [Related]
8. Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama Desert, northern Chile. Vargas Castillo R; Beck A Fungal Biol; 2012 Jun; 116(6):665-76. PubMed ID: 22658312 [TBL] [Abstract][Full Text] [Related]
9. Reproductive and dispersal strategies shape the diversity of mycobiont-photobiont association in Cladonia lichens. Steinová J; Škaloud P; Yahr R; Bestová H; Muggia L Mol Phylogenet Evol; 2019 May; 134():226-237. PubMed ID: 30797939 [TBL] [Abstract][Full Text] [Related]
10. The symbiotic playground of lichen thalli--a highly flexible photobiont association in rock-inhabiting lichens. Muggia L; Vancurova L; Škaloud P; Peksa O; Wedin M; Grube M FEMS Microbiol Ecol; 2013 Aug; 85(2):313-23. PubMed ID: 23530593 [TBL] [Abstract][Full Text] [Related]
11. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Leavitt SD; Kraichak E; Nelsen MP; Altermann S; Divakar PK; Alors D; Esslinger TL; Crespo A; Lumbsch T Mol Ecol; 2015 Jul; 24(14):3779-97. PubMed ID: 26073165 [TBL] [Abstract][Full Text] [Related]
13. Heavy-metal pollution induces changes in the genetic composition and anatomical properties of photobionts in pioneer lichens colonising post-industrial habitats. Rola K; Lenart-Boroń A; Boroń P; Osyczka P Sci Total Environ; 2021 Jan; 750():141439. PubMed ID: 32882488 [TBL] [Abstract][Full Text] [Related]
14. Structural impacts on thallus and algal cell components of two lichen species in response to low-level air pollution in pacific northwest forests. Ra HS; Rubin L; Crang RF Microsc Microanal; 2004 Apr; 10(2):270-9. PubMed ID: 15306052 [TBL] [Abstract][Full Text] [Related]
15. Global Biodiversity Patterns of the Photobionts Associated with the Genus Cladonia (Lecanorales, Ascomycota). Pino-Bodas R; Stenroos S Microb Ecol; 2021 Jul; 82(1):173-187. PubMed ID: 33150498 [TBL] [Abstract][Full Text] [Related]
16. Sharing of photobionts in sympatric populations of Thamnolia and Cetraria lichens: evidence from high-throughput sequencing. Onuț-Brännström I; Benjamin M; Scofield DG; Heiðmarsson S; Andersson MGI; Lindström ES; Johannesson H Sci Rep; 2018 Mar; 8(1):4406. PubMed ID: 29535321 [TBL] [Abstract][Full Text] [Related]
17. Copper tolerance in the macrolichens Cladonia furcata and Cladina arbuscula subsp. mitis is constitutive rather than inducible. Bačkor M; Péli ER; Vantová I Chemosphere; 2011 Sep; 85(1):106-13. PubMed ID: 21676428 [TBL] [Abstract][Full Text] [Related]
18. Physiological adaptations in the lichens Peltigera rufescens and Cladina arbuscula var. mitis, and the moss Racomitrium lanuginosum to copper-rich substrate. Backor M; Klejdus B; Vantová I; Kovácik J Chemosphere; 2009 Sep; 76(10):1340-3. PubMed ID: 19595434 [TBL] [Abstract][Full Text] [Related]
19. Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Henskens FL; Green TG; Wilkins A Ann Bot; 2012 Aug; 110(3):555-63. PubMed ID: 22648879 [TBL] [Abstract][Full Text] [Related]
20. Response to copper stress in aposymbiotically grown lichen mycobiont Cladonia cristatella: uptake, viability, ergosterol and production of non-protein thiols. Backor M; Pawlik-Skowrońska B; Tomko J; Budová J; Sanità di Toppi L Mycol Res; 2006 Aug; 110(Pt 8):994-9. PubMed ID: 16893636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]