These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Gain-of-function R225W mutation in human AMPKgamma(3) causing increased glycogen and decreased triglyceride in skeletal muscle. Costford SR; Kavaslar N; Ahituv N; Chaudhry SN; Schackwitz WS; Dent R; Pennacchio LA; McPherson R; Harper ME PLoS One; 2007 Sep; 2(9):e903. PubMed ID: 17878938 [TBL] [Abstract][Full Text] [Related]
5. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells. Zhan Y; Sun X; Li B; Cai H; Xu C; Liang Q; Lu C; Qian R; Chen S; Yin L; Sheng W; Huang G; Sun A; Ge J; Sun N J Mol Cell Cardiol; 2018 Apr; 117():49-61. PubMed ID: 29452156 [TBL] [Abstract][Full Text] [Related]
6. CRISPR correction of the PRKAG2 gene mutation in the patient's induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities. Ben Jehuda R; Eisen B; Shemer Y; Mekies LN; Szantai A; Reiter I; Cui H; Guan K; Haron-Khun S; Freimark D; Sperling SR; Gherghiceanu M; Arad M; Binah O Heart Rhythm; 2018 Feb; 15(2):267-276. PubMed ID: 28917552 [TBL] [Abstract][Full Text] [Related]
7. A PRKAG2 mutation causes biphasic changes in myocardial AMPK activity and does not protect against ischemia. Banerjee SK; Ramani R; Saba S; Rager J; Tian R; Mathier MA; Ahmad F Biochem Biophys Res Commun; 2007 Aug; 360(2):381-7. PubMed ID: 17597581 [TBL] [Abstract][Full Text] [Related]
8. Increased glycogen stores due to gamma-AMPK overexpression protects against ischemia and reperfusion damage. Ofir M; Arad M; Porat E; Freimark D; Chepurko Y; Vidne BA; Seidman CE; Seidman JG; Kemp BE; Hochhauser E Biochem Pharmacol; 2008 Apr; 75(7):1482-91. PubMed ID: 18261713 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of G100S mutation in PRKAG2 causes Wolff-Parkinson-White syndrome in zebrafish. Zhang BL; Ye Z; Xu RL; You XH; Qin YW; Wu H; Cao J; Zhang JL; Zheng X; Zhao XX Clin Genet; 2014 Sep; 86(3):287-91. PubMed ID: 23992123 [TBL] [Abstract][Full Text] [Related]
10. Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome. Sidhu JS; Rajawat YS; Rami TG; Gollob MH; Wang Z; Yuan R; Marian AJ; DeMayo FJ; Weilbacher D; Taffet GE; Davies JK; Carling D; Khoury DS; Roberts R Circulation; 2005 Jan; 111(1):21-9. PubMed ID: 15611370 [TBL] [Abstract][Full Text] [Related]
11. N488I mutation of the gamma2-subunit results in bidirectional changes in AMP-activated protein kinase activity. Zou L; Shen M; Arad M; He H; Løfgren B; Ingwall JS; Seidman CE; Seidman JG; Tian R Circ Res; 2005 Aug; 97(4):323-8. PubMed ID: 16051890 [TBL] [Abstract][Full Text] [Related]
12. Identification and functional analysis of a novel PRKAG2 mutation responsible for Chinese PRKAG2 cardiac syndrome reveal an important role of non-CBS domains in regulating the AMPK pathway. Zhang BL; Xu RL; Zhang J; Zhao XX; Wu H; Ma LP; Hu JQ; Zhang JL; Ye Z; Zheng X; Qin YW J Cardiol; 2013 Oct; 62(4):241-8. PubMed ID: 23778007 [TBL] [Abstract][Full Text] [Related]
13. Increased alpha2 subunit-associated AMPK activity and PRKAG2 cardiomyopathy. Ahmad F; Arad M; Musi N; He H; Wolf C; Branco D; Perez-Atayde AR; Stapleton D; Bali D; Xing Y; Tian R; Goodyear LJ; Berul CI; Ingwall JS; Seidman CE; Seidman JG Circulation; 2005 Nov; 112(20):3140-8. PubMed ID: 16275868 [TBL] [Abstract][Full Text] [Related]
14. Nodoventricular accessory pathways in PRKAG2-dependent familial preexcitation syndrome reveal a disorder in cardiac development. Tan HL; van der Wal AC; Campian ME; Kruyswijk HH; ten Hove Jansen B; van Doorn DJ; Oskam HJ; Becker AE; Wilde AA Circ Arrhythm Electrophysiol; 2008 Oct; 1(4):276-81. PubMed ID: 19808419 [TBL] [Abstract][Full Text] [Related]
15. Mutation in the γ2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Kim M; Hunter RW; Garcia-Menendez L; Gong G; Yang YY; Kolwicz SC; Xu J; Sakamoto K; Wang W; Tian R Circ Res; 2014 Mar; 114(6):966-75. PubMed ID: 24503893 [TBL] [Abstract][Full Text] [Related]
16. Muscle-specific overexpression of wild type and R225Q mutant AMP-activated protein kinase gamma3-subunit differentially regulates glycogen accumulation. Yu H; Hirshman MF; Fujii N; Pomerleau JM; Peter LE; Goodyear LJ Am J Physiol Endocrinol Metab; 2006 Sep; 291(3):E557-65. PubMed ID: 16638825 [TBL] [Abstract][Full Text] [Related]
17. AKT-mTOR signaling-mediated rescue of Zhuo J; Geng H; Wu X; Fan M; Sheng H; Yao J Cardiovasc Diagn Ther; 2022 Jun; 12(3):360-369. PubMed ID: 35800350 [TBL] [Abstract][Full Text] [Related]
18. Genetic model for the chronic activation of skeletal muscle AMP-activated protein kinase leads to glycogen accumulation. Barré L; Richardson C; Hirshman MF; Brozinick J; Fiering S; Kemp BE; Goodyear LJ; Witters LA Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E802-11. PubMed ID: 17106064 [TBL] [Abstract][Full Text] [Related]
19. A novel, de novo mutation in the Xu Y; Gray A; Hardie DG; Uzun A; Shaw S; Padbury J; Phornphutkul C; Tseng YT Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H283-H292. PubMed ID: 28550180 [No Abstract] [Full Text] [Related]
20. Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Sanna B; Bueno OF; Dai YS; Wilkins BJ; Molkentin JD Mol Cell Biol; 2005 Feb; 25(3):865-78. PubMed ID: 15657416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]