These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20031915)

  • 1. Evidence of a light-sensing role for folate in Arabidopsis cryptochrome blue-light receptors.
    Hoang N; Bouly JP; Ahmad M
    Mol Plant; 2008 Jan; 1(1):68-74. PubMed ID: 20031915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.
    Banerjee R; Schleicher E; Meier S; Viana RM; Pokorny R; Ahmad M; Bittl R; Batschauer A
    J Biol Chem; 2007 May; 282(20):14916-22. PubMed ID: 17355959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.
    Bouly JP; Schleicher E; Dionisio-Sese M; Vandenbussche F; Van Der Straeten D; Bakrim N; Meier S; Batschauer A; Galland P; Bittl R; Ahmad M
    J Biol Chem; 2007 Mar; 282(13):9383-9391. PubMed ID: 17237227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna.
    Klar T; Pokorny R; Moldt J; Batschauer A; Essen LO
    J Mol Biol; 2007 Feb; 366(3):954-64. PubMed ID: 17188299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
    Kottke T; Batschauer A; Ahmad M; Heberle J
    Biochemistry; 2006 Feb; 45(8):2472-9. PubMed ID: 16489739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoactivation and inactivation of Arabidopsis cryptochrome 2.
    Wang Q; Zuo Z; Wang X; Gu L; Yoshizumi T; Yang Z; Yang L; Liu Q; Liu W; Han YJ; Kim JI; Liu B; Wohlschlegel JA; Matsui M; Oka Y; Lin C
    Science; 2016 Oct; 354(6310):343-347. PubMed ID: 27846570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana.
    Liu B; Yang Z; Gomez A; Liu B; Lin C; Oka Y
    J Plant Res; 2016 Mar; 129(2):137-48. PubMed ID: 26810763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1.
    Gao J; Wang X; Zhang M; Bian M; Deng W; Zuo Z; Yang Z; Zhong D; Lin C
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9135-40. PubMed ID: 26106155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark.
    Pooam M; Arthaut LD; Burdick D; Link J; Martino CF; Ahmad M
    Planta; 2019 Feb; 249(2):319-332. PubMed ID: 30194534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lifetimes of Arabidopsis cryptochrome signaling states in vivo.
    Herbel V; Orth C; Wenzel R; Ahmad M; Bittl R; Batschauer A
    Plant J; 2013 May; 74(4):583-92. PubMed ID: 23398192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocycle and signaling mechanisms of plant cryptochromes.
    Ahmad M
    Curr Opin Plant Biol; 2016 Oct; 33():108-115. PubMed ID: 27423124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Arabidopsis cryptochrome 2 I404F mutant is hypersensitive and shows flavin reduction even in the absence of light.
    Araguirang GE; Niemann N; Kiontke S; Eckel M; Dionisio-Sese ML; Batschauer A
    Planta; 2019 Dec; 251(1):33. PubMed ID: 31832774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways.
    Engelhard C; Wang X; Robles D; Moldt J; Essen LO; Batschauer A; Bittl R; Ahmad M
    Plant Cell; 2014 Nov; 26(11):4519-31. PubMed ID: 25428980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
    Kondoh M; Shiraishi C; Müller P; Ahmad M; Hitomi K; Getzoff ED; Terazima M
    J Mol Biol; 2011 Oct; 413(1):128-37. PubMed ID: 21875594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression.
    Yang YJ; Zuo ZC; Zhao XY; Li X; Klejnot J; Li Y; Chen P; Liang SP; Yu XH; Liu XM; Lin CT
    Mol Plant; 2008 Jan; 1(1):167-77. PubMed ID: 20031923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.
    El-Esawi M; Glascoe A; Engle D; Ritz T; Link J; Ahmad M
    Plant Signal Behav; 2015; 10(9):e1063758. PubMed ID: 26313597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response.
    Gu NN; Zhang YC; Yang HQ
    Mol Plant; 2012 Jan; 5(1):85-97. PubMed ID: 21765176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interconnection of the Antenna Pigment 8-HDF and Flavin Facilitates Red-Light Reception in a Bifunctional Animal-like Cryptochrome.
    Oldemeyer S; Haddad AZ; Fleming GR
    Biochemistry; 2020 Feb; 59(4):594-604. PubMed ID: 31846308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperactivity of the
    Orth C; Niemann N; Hennig L; Essen LO; Batschauer A
    J Biol Chem; 2017 Aug; 292(31):12906-12920. PubMed ID: 28634231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1.
    Bouly JP; Giovani B; Djamei A; Mueller M; Zeugner A; Dudkin EA; Batschauer A; Ahmad M
    Eur J Biochem; 2003 Jul; 270(14):2921-8. PubMed ID: 12846824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.