These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20031915)

  • 21. Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1.
    Bouly JP; Giovani B; Djamei A; Mueller M; Zeugner A; Dudkin EA; Batschauer A; Ahmad M
    Eur J Biochem; 2003 Jul; 270(14):2921-8. PubMed ID: 12846824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
    Langenbacher T; Immeln D; Dick B; Kottke T
    J Am Chem Soc; 2009 Oct; 131(40):14274-80. PubMed ID: 19754110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ATP boosts lit state formation and activity of Arabidopsis cryptochrome 2.
    Eckel M; Steinchen W; Batschauer A
    Plant J; 2018 Oct; 96(2):389-403. PubMed ID: 30044014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of temperature on the Arabidopsis cryptochrome photocycle.
    Pooam M; Dixon N; Hilvert M; Misko P; Waters K; Jourdan N; Drahy S; Mills S; Engle D; Link J; Ahmad M
    Physiol Plant; 2021 Jul; 172(3):1653-1661. PubMed ID: 33583025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism.
    Consentino L; Lambert S; Martino C; Jourdan N; Bouchet PE; Witczak J; Castello P; El-Esawi M; Corbineau F; d'Harlingue A; Ahmad M
    New Phytol; 2015 Jun; 206(4):1450-62. PubMed ID: 25728686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. What makes the difference between a cryptochrome and DNA photolyase? A spectroelectrochemical comparison of the flavin redox transitions.
    Balland V; Byrdin M; Eker AP; Ahmad M; Brettel K
    J Am Chem Soc; 2009 Jan; 131(2):426-7. PubMed ID: 19140781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response of the Sensory animal-like cryptochrome aCRY to blue and red light as revealed by infrared difference spectroscopy.
    Spexard M; Thöing C; Beel B; Mittag M; Kottke T
    Biochemistry; 2014 Feb; 53(6):1041-50. PubMed ID: 24467183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photolyases and cryptochromes: common mechanisms of DNA repair and light-driven signaling?
    Essen LO
    Curr Opin Struct Biol; 2006 Feb; 16(1):51-9. PubMed ID: 16427270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallization and preliminary X-ray analysis of cryptochrome 3 from Arabidopsis thaliana.
    Pokorny R; Klar T; Essen LO; Batschauer A
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Oct; 61(Pt 10):935-8. PubMed ID: 16511200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microsecond Deprotonation of Aspartic Acid and Response of the α/β Subdomain Precede C-Terminal Signaling in the Blue Light Sensor Plant Cryptochrome.
    Thöing C; Oldemeyer S; Kottke T
    J Am Chem Soc; 2015 May; 137(18):5990-9. PubMed ID: 25909499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2.
    Yu X; Shalitin D; Liu X; Maymon M; Klejnot J; Yang H; Lopez J; Zhao X; Bendehakkalu KT; Lin C
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7289-94. PubMed ID: 17438275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome.
    Burney S; Hoang N; Caruso M; Dudkin EA; Ahmad M; Bouly JP
    FEBS Lett; 2009 May; 583(9):1427-33. PubMed ID: 19327354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism.
    Tsuchida-Mayama T; Sakai T; Hanada A; Uehara Y; Asami T; Yamaguchi S
    Plant J; 2010 May; 62(4):653-62. PubMed ID: 20202166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATP binding turns plant cryptochrome into an efficient natural photoswitch.
    Müller P; Bouly JP; Hitomi K; Balland V; Getzoff ED; Ritz T; Brettel K
    Sci Rep; 2014 Jun; 4():5175. PubMed ID: 24898692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stop CRYing! Inhibition of cryptochrome function by small proteins.
    Kruusvee V; Toft AM; Aguida B; Ahmad M; Wenkel S
    Biochem Soc Trans; 2022 Apr; 50(2):773-782. PubMed ID: 35311888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In-Planta Expression: Searching for the Genuine Chromophores of Cryptochrome-3 from Arabidopsis thaliana.
    Gärtner W
    Photochem Photobiol; 2017 Jan; 93(1):382-384. PubMed ID: 28211124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural insights into photoactivation of plant Cryptochrome-2.
    Palayam M; Ganapathy J; Guercio AM; Tal L; Deck SL; Shabek N
    Commun Biol; 2021 Jan; 4(1):28. PubMed ID: 33398020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The cryptochromes: blue light photoreceptors in plants and animals.
    Chaves I; Pokorny R; Byrdin M; Hoang N; Ritz T; Brettel K; Essen LO; van der Horst GT; Batschauer A; Ahmad M
    Annu Rev Plant Biol; 2011; 62():335-64. PubMed ID: 21526969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The action mechanisms of plant cryptochromes.
    Liu H; Liu B; Zhao C; Pepper M; Lin C
    Trends Plant Sci; 2011 Dec; 16(12):684-91. PubMed ID: 21983106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photooligomerization Determines Photosensitivity and Photoreactivity of Plant Cryptochromes.
    Liu Q; Su T; He W; Ren H; Liu S; Chen Y; Gao L; Hu X; Lu H; Cao S; Huang Y; Wang X; Wang Q; Lin C
    Mol Plant; 2020 Mar; 13(3):398-413. PubMed ID: 31953223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.