BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 20031988)

  • 1. Climatic warming increases voltinism in European butterflies and moths.
    Altermatt F
    Proc Biol Sci; 2010 Apr; 277(1685):1281-7. PubMed ID: 20031988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of climate change on voltinism and prospective diapause induction of a global pest insect--Cydia pomonella (L.).
    Stoeckli S; Hirschi M; Spirig C; Calanca P; Rotach MW; Samietz J
    PLoS One; 2012; 7(4):e35723. PubMed ID: 22539997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change effects on animal ecology: butterflies and moths as a case study.
    Hill GM; Kawahara AY; Daniels JC; Bateman CC; Scheffers BR
    Biol Rev Camb Philos Soc; 2021 Oct; 96(5):2113-2126. PubMed ID: 34056827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explaining the sawtooth: latitudinal periodicity in a circadian gene correlates with shifts in generation number.
    Levy RC; Kozak GM; Wadsworth CB; Coates BS; Dopman EB
    J Evol Biol; 2015 Jan; 28(1):40-53. PubMed ID: 25430782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Management Implications for the Nantucket Pine Tip Moth From Temperature-Induced Shifts in Phenology and Voltinism Attributed to Climate Change.
    Cassidy VA; Asaro C; McCarty EP
    J Econ Entomol; 2022 Oct; 115(5):1331-1341. PubMed ID: 35552738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tell me what you eat and I'll tell you when you fly: diet can predict phenological changes in response to climate change.
    Altermatt F
    Ecol Lett; 2010 Dec; 13(12):1475-84. PubMed ID: 20937056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal variation in voltinism of insect pests: sensitivity to location and temperature anomalies.
    Marchioro CA; Sampaio F; da Silva Krechemer F
    Neotrop Entomol; 2021 Apr; 50(2):208-217. PubMed ID: 33656657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pests.
    Haynes KJ; Allstadt AJ; Klimetzek D
    Glob Chang Biol; 2014 Jun; 20(6):2004-18. PubMed ID: 24464875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in flight period predict trends in abundance of Massachusetts butterflies.
    Michielini JP; Dopman EB; Crone EE
    Ecol Lett; 2021 Feb; 24(2):249-257. PubMed ID: 33166071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active around the year: Butterflies and moths adapt their life cycles to a warming world.
    Habel JC; Schmitt T; Gros P; Ulrich W
    Glob Chang Biol; 2024 Jan; 30(1):e17103. PubMed ID: 38273556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century.
    Bell JR; Botham MS; Henrys PA; Leech DI; Pearce-Higgins JW; Shortall CR; Brereton TM; Pickup J; Thackeray SJ
    Glob Chang Biol; 2019 Jun; 25(6):1982-1994. PubMed ID: 30761691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking inter-annual variation in environment, phenology, and abundance for a montane butterfly community.
    Stewart JE; Illán JG; Richards SA; Gutiérrez D; Wilson RJ
    Ecology; 2020 Jan; 101(1):e02906. PubMed ID: 31560801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate effects on late-season flight times of Massachusetts butterflies.
    Zipf L; Williams EH; Primack RB; Stichter S
    Int J Biometeorol; 2017 Sep; 61(9):1667-1673. PubMed ID: 28382376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths.
    Hunter MD; Kozlov MV; Itämies J; Pulliainen E; Bäck J; Kyrö EM; Niemelä P
    Glob Chang Biol; 2014 Jun; 20(6):1723-37. PubMed ID: 24421221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insect Development, Thermal Plasticity and Fitness Implications in Changing, Seasonal Environments.
    Buckley LB; Arakaki AJ; Cannistra AF; Kharouba HM; Kingsolver JG
    Integr Comp Biol; 2017 Nov; 57(5):988-998. PubMed ID: 28662575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hotter the better? Climate change and voltinism of Spodoptera eridania estimated with different methods.
    Sampaio F; Krechemer FS; Marchioro CA
    J Therm Biol; 2021 May; 98():102946. PubMed ID: 34016363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenology responses of temperate butterflies to latitude depend on ecological traits.
    Faltýnek Fric Z; Rindoš M; Konvička M
    Ecol Lett; 2020 Jan; 23(1):172-180. PubMed ID: 31724293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex responses of insect phenology to climate change.
    Forrest JR
    Curr Opin Insect Sci; 2016 Oct; 17():49-54. PubMed ID: 27720073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projecting insect voltinism under high and low greenhouse gas emission conditions.
    Chen S; Fleischer SJ; Tobin PC; Saunders MC
    Environ Entomol; 2011 Jun; 40(3):505-15. PubMed ID: 22251628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.