These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 20031988)

  • 41. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change.
    Davies WJ
    Ecology; 2019 Apr; 100(4):e02612. PubMed ID: 30636278
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?
    McDermott Long O; Warren R; Price J; Brereton TM; Botham MS; Franco AM
    J Anim Ecol; 2017 Jan; 86(1):108-116. PubMed ID: 27796048
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change.
    Bestion E; Teyssier A; Richard M; Clobert J; Cote J
    PLoS Biol; 2015 Oct; 13(10):e1002281. PubMed ID: 26501958
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of regional climate warming on the phenology of butterflies in boreal forests in Manitoba, Canada.
    Westwood AR; Blair D
    Environ Entomol; 2010 Aug; 39(4):1122-33. PubMed ID: 22127162
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Breakpoints in butterfly decline in Central Europe over the last century.
    Habel JC; Schmitt T; Gros P; Ulrich W
    Sci Total Environ; 2022 Dec; 851(Pt 2):158315. PubMed ID: 36030878
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of experimental warming on the timing of a plant-insect herbivore interaction.
    Kharouba HM; Vellend M; Sarfraz RM; Myers JH
    J Anim Ecol; 2015 May; 84(3):785-796. PubMed ID: 25535854
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessing the Impact of Climate Change on Argyrotaenia sphaleropa (Meyrick, 1909) Voltinism: Implications for Fruit Production in Southern Brazil.
    Dos Santos HT; Marchioro CA
    Neotrop Entomol; 2024 Aug; 53(4):703-714. PubMed ID: 38874655
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Climatic warming disrupts recurrent Alpine insect outbreaks.
    Johnson DM; Büntgen U; Frank DC; Kausrud K; Haynes KJ; Liebhold AM; Esper J; Stenseth NC
    Proc Natl Acad Sci U S A; 2010 Nov; 107(47):20576-81. PubMed ID: 21059922
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phenotypic biomarkers of climatic impacts on declining insect populations: A key role for decadal drought, thermal buffering and amplification effects and host plant dynamics.
    Carnicer J; Stefanescu C; Vives-Ingla M; López C; Cortizas S; Wheat C; Vila R; Llusià J; Peñuelas J
    J Anim Ecol; 2019 Mar; 88(3):376-391. PubMed ID: 30480313
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Weather anomalies more important than climate means in driving insect phenology.
    Guralnick RP; Campbell LP; Belitz MW
    Commun Biol; 2023 May; 6(1):490. PubMed ID: 37147472
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CLIMBER: Climatic niche characteristics of the butterflies in Europe.
    Schweiger O; Harpke A; Wiemers M; Settele J
    Zookeys; 2014; (367):65-84. PubMed ID: 24478578
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of climate change on the reproductive diapause and voltinism of the carrot weevil, Listronotus oregonensis.
    Gagnon AÈ; Bourgeois G
    J Insect Physiol; 2024 Jun; 155():104653. PubMed ID: 38763361
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Drifting Phenologies Cause Reduced Seasonality of Butterflies in Response to Increasing Temperatures.
    Gezon ZJ; Lindborg RJ; Savage A; Daniels JC
    Insects; 2018 Nov; 9(4):. PubMed ID: 30513660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adaptation to the new land or effect of global warming? An age-structured model for rapid voltinism change in an alien lepidopteran pest.
    Yamanaka T; Tatsuki S; Shimada M
    J Anim Ecol; 2008 May; 77(3):585-96. PubMed ID: 18266693
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Seasonal clines of evolutionarily stable reproductive effort in insects.
    Kivelä SM; Välimäki P; Oksanen J; Kaitala A; Kaitala V
    Am Nat; 2009 Oct; 174(4):526-36. PubMed ID: 19691432
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Warmer springs disrupt the synchrony of oak and winter moth phenology.
    Visser ME; Holleman LJ
    Proc Biol Sci; 2001 Feb; 268(1464):289-94. PubMed ID: 11217900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial synchrony is related to environmental change in Finnish moth communities.
    Dallas TA; Antão LH; Pöyry J; Leinonen R; Ovaskainen O
    Proc Biol Sci; 2020 May; 287(1927):20200684. PubMed ID: 32453988
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Climate drivers of adult insect activity are conditioned by life history traits.
    Belitz MW; Barve V; Doby JR; Hantak MM; Larsen EA; Li D; Oswald JA; Sewnath N; Walters M; Barve N; Earl K; Gardner N; Guralnick RP; Stucky BJ
    Ecol Lett; 2021 Dec; 24(12):2687-2699. PubMed ID: 34636143
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Increasing frequency of low summer precipitation synchronizes dynamics and compromises metapopulation stability in the Glanville fritillary butterfly.
    Tack AJ; Mononen T; Hanski I
    Proc Biol Sci; 2015 May; 282(1806):20150173. PubMed ID: 25854888
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies.
    Radchuk V; Turlure C; Schtickzelle N
    J Anim Ecol; 2013 Jan; 82(1):275-85. PubMed ID: 22924795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.