These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 20031988)
61. Spatio-temporal temperature variations in MarkSim multimodel data and their impact on voltinism of fruit fly, Bactrocera species on mango. Choudhary JS; Mali SS; Mukherjee D; Kumari A; Moanaro L; Rao MS; Das B; Singh AK; Bhatt BP Sci Rep; 2019 Jul; 9(1):9708. PubMed ID: 31273224 [TBL] [Abstract][Full Text] [Related]
62. Life-history responses to temperature and seasonality mediate ectotherm consumer-resource dynamics under climate warming. Twardochleb LA; Zarnetske PL; Klausmeier CA Proc Biol Sci; 2023 Apr; 290(1997):20222377. PubMed ID: 37122251 [TBL] [Abstract][Full Text] [Related]
63. Degree day-based model predicts pink bollworm phenology across geographical locations of subtropics and semi-arid tropics of India. Fand BB; Nagrare VS; Bal SK; Naik VCB; Naikwadi BV; Mahule DJ; Gokte-Narkhedkar N; Waghmare VN Sci Rep; 2021 Jan; 11(1):436. PubMed ID: 33432040 [TBL] [Abstract][Full Text] [Related]
64. Irreversible impact of early thermal conditions: an integrative study of developmental plasticity linked to mobility in a butterfly species. Degut A; Fischer K; Quque M; Criscuolo F; Michalik P; Beaulieu M J Exp Biol; 2022 Feb; 225(3):. PubMed ID: 34989809 [TBL] [Abstract][Full Text] [Related]
65. Developmental trap or demographic bonanza? Opposing consequences of earlier phenology in a changing climate for a multivoltine butterfly. Kerr NZ; Wepprich T; Grevstad FS; Dopman EB; Chew FS; Crone EE Glob Chang Biol; 2020 Apr; 26(4):2014-2027. PubMed ID: 31833162 [TBL] [Abstract][Full Text] [Related]
66. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms. Llusia D; Márquez R; Beltrán JF; Benítez M; do Amaral JP Glob Chang Biol; 2013 Sep; 19(9):2655-74. PubMed ID: 23712567 [TBL] [Abstract][Full Text] [Related]
67. Voltine Ecotypes of the Asian Corn Borer and Their Response to Climate Warming. Liu KQ; Wang LX; Zhang TT; Bai SX; Wang KQ; Wang ZY; He KL; Hutchison WD Insects; 2021 Mar; 12(3):. PubMed ID: 33803188 [TBL] [Abstract][Full Text] [Related]
68. Intra-Population Alteration on Voltinism of Asian Corn Borer in Response to Climate Warming. Liu K; Wang Z; Zhang T; He K Biology (Basel); 2023 Jan; 12(2):. PubMed ID: 36829470 [TBL] [Abstract][Full Text] [Related]
69. One phase of the dormancy developmental pathway is critical for the evolution of insect seasonality. Wadsworth CB; Woods WA; Hahn DA; Dopman EB J Evol Biol; 2013 Nov; 26(11):2359-68. PubMed ID: 24016035 [TBL] [Abstract][Full Text] [Related]
70. Long-term large-scale decline in relative abundances of butterfly and burnet moth species across south-western Germany. Habel JC; Trusch R; Schmitt T; Ochse M; Ulrich W Sci Rep; 2019 Oct; 9(1):14921. PubMed ID: 31624369 [TBL] [Abstract][Full Text] [Related]
71. Inter-sexual and inter-generation differences in dispersal of a bivoltine butterfly. Plazio E; Nowicki P Sci Rep; 2021 May; 11(1):10950. PubMed ID: 34040121 [TBL] [Abstract][Full Text] [Related]
72. Comparing Behavior and Clock Gene Expression between Caterpillars, Butterflies, and Moths. Niepoth N; Ke G; de Roode JC; Groot AT J Biol Rhythms; 2018 Feb; 33(1):52-64. PubMed ID: 29277154 [TBL] [Abstract][Full Text] [Related]
73. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change. Huang J; Hao H Int J Biometeorol; 2018 Aug; 62(8):1507-1520. PubMed ID: 29752540 [TBL] [Abstract][Full Text] [Related]
74. Complex life cycles and the responses of insects to climate change. Kingsolver JG; Woods HA; Buckley LB; Potter KA; MacLean HJ; Higgins JK Integr Comp Biol; 2011 Nov; 51(5):719-32. PubMed ID: 21724617 [TBL] [Abstract][Full Text] [Related]
75. Climate change, breeding date and nestling diet: how temperature differentially affects seasonal changes in pied flycatcher diet depending on habitat variation. Burger C; Belskii E; Eeva T; Laaksonen T; Mägi M; Mänd R; Qvarnström A; Slagsvold T; Veen T; Visser ME; Wiebe KL; Wiley C; Wright J; Both C J Anim Ecol; 2012 Jul; 81(4):926-36. PubMed ID: 22356622 [TBL] [Abstract][Full Text] [Related]
77. Predicting the sensitivity of butterfly phenology to temperature over the past century. Kharouba HM; Paquette SR; Kerr JT; Vellend M Glob Chang Biol; 2014 Feb; 20(2):504-14. PubMed ID: 24249425 [TBL] [Abstract][Full Text] [Related]
78. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album. Braschler B; Hill JK J Anim Ecol; 2007 May; 76(3):415-23. PubMed ID: 17439459 [TBL] [Abstract][Full Text] [Related]
79. Global warming favours light-coloured insects in Europe. Zeuss D; Brandl R; Brändle M; Rahbek C; Brunzel S Nat Commun; 2014 May; 5():3874. PubMed ID: 24866819 [TBL] [Abstract][Full Text] [Related]
80. From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts. Bonebrake TC; Boggs CL; Stamberger JA; Deutsch CA; Ehrlich PR Proc Biol Sci; 2014 Oct; 281(1793):. PubMed ID: 25165769 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]