These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20033042)

  • 21. Rapidly rotating second-generation progenitors for the 'blue hook' stars of ω Centauri.
    Tailo M; D'Antona F; Vesperini E; Di Criscienzo M; Ventura P; Milone AP; Bellini A; Dotter A; Decressin T; D'Ercole A; Caloi V; Capuzzo-Dolcetta R
    Nature; 2015 Jul; 523(7560):318-21. PubMed ID: 26098367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rotations and Abundances of Blue Horizontal-Branch Stars in Globular Cluster M15.
    Behr BB; Cohen JG; McCarthy JK
    Astrophys J; 2000 Mar; 531(1):L37-L40. PubMed ID: 10673409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster.
    Meibom S; Barnes SA; Platais I; Gilliland RL; Latham DW; Mathieu RD
    Nature; 2015 Jan; 517(7536):589-91. PubMed ID: 25539085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relativistic Binaries in Globular Clusters.
    Benacquista MJ
    Living Rev Relativ; 2006; 9(1):2. PubMed ID: 28163652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relativistic Binaries in Globular Clusters.
    Benacquista MJ
    Living Rev Relativ; 2002; 5(1):2. PubMed ID: 28163634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Habitable zones around main sequence stars.
    Kasting JF; Whitmire DP; Reynolds RT
    Icarus; 1993 Jan; 101(1):108-28. PubMed ID: 11536936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binaries in star clusters and the origin of the field stellar population.
    Goodwin SP
    Philos Trans A Math Phys Eng Sci; 2010 Feb; 368(1913):851-66. PubMed ID: 20083509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Young Accreting Compact Objects in M31: The Combined Power of
    Lazzarini M; Hornschemeier AE; Williams BF; Wik D; Vulic N; Yukita M; Zezas A; Lewis AR; Durbin M; Ptak A; Bodaghee A; Lehmer BD; Antoniou V; Maccarone T
    Astrophys J; 2018 Jul; 862(1):. PubMed ID: 31631897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultracompact X-Ray Binaries in Globular Clusters: Variability of the Optical Counterpart of X1832-330 in NGC 6652.
    Deutsch EW; Margon B; Anderson SF
    Astrophys J; 2000 Feb; 530(1):L21-L24. PubMed ID: 10642196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes.
    García-Berro E; Torres S; Althaus LG; Renedo I; Lorén-Aguilar P; Córsico AH; Rohrmann RD; Salaris M; Isern J
    Nature; 2010 May; 465(7295):194-6. PubMed ID: 20463732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Evolution of Compact Binary Star Systems.
    Postnov KA; Yungelson LR
    Living Rev Relativ; 2006; 9(1):6. PubMed ID: 28163653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Survival of a brown dwarf after engulfment by a red giant star.
    Maxted PF; Napiwotzki R; Dobbie PD; Burleigh MR
    Nature; 2006 Aug; 442(7102):543-5. PubMed ID: 16885979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Evolution of Compact Binary Star Systems.
    Postnov KA; Yungelson LR
    Living Rev Relativ; 2014; 17(1):3. PubMed ID: 28179847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Outbursts of luminous blue variable stars from variations in the helium opacity.
    Jiang YF; Cantiello M; Bildsten L; Quataert E; Blaes O; Stone J
    Nature; 2018 Sep; 561(7724):498-501. PubMed ID: 30258134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range.
    Belczynski K; Holz DE; Bulik T; O'Shaughnessy R
    Nature; 2016 Jun; 534(7608):512-5. PubMed ID: 27337338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NGC1818 unveils the origin of the extended main-sequence turn-off in young Magellanic Clouds clusters.
    Cordoni G; Milone AP; Marino AF; Cignoni M; Lagioia EP; Tailo M; Carlos M; Dondoglio E; Jang S; Mohandasan A; Legnardi MV
    Nat Commun; 2022 Jul; 13(1):4325. PubMed ID: 35882861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Black Hole Mergers in the Universe.
    Portegies Zwart SF ; McMillan SL
    Astrophys J; 2000 Jan; 528(1):L17-L20. PubMed ID: 10587485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of new stellar populations from gas accreted by massive young star clusters.
    Li C; de Grijs R; Deng L; Geller AM; Xin Y; Hu Y; Faucher-Giguère CA
    Nature; 2016 Jan; 529(7587):502-4. PubMed ID: 26819043
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early turbulent mixing as the origin of chemical homogeneity in open star clusters.
    Feng Y; Krumholz MR
    Nature; 2014 Sep; 513(7519):523-5. PubMed ID: 25174709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asymmetric mass ratios for bright double neutron-star mergers.
    Ferdman RD; Freire PCC; Perera BBP; Pol N; Camilo F; Chatterjee S; Cordes JM; Crawford F; Hessels JWT; Kaspi VM; McLaughlin MA; Parent E; Stairs IH; van Leeuwen J
    Nature; 2020 Jul; 583(7815):211-214. PubMed ID: 32641814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.