These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20033328)

  • 1. A parallel robot to assist vitreoretinal surgery.
    Nakano T; Sugita N; Ueta T; Tamaki Y; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2009 Nov; 4(6):517-26. PubMed ID: 20033328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsurgical robotic system for vitreoretinal surgery.
    Ida Y; Sugita N; Ueta T; Tamaki Y; Tanimoto K; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2012 Jan; 7(1):27-34. PubMed ID: 21573828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative robot assistant for retinal microsurgery.
    Fleming I; Balicki M; Koo J; Iordachita I; Mitchell B; Handa J; Hager G; Taylor R
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):543-50. PubMed ID: 18982647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward robot-assisted vascular microsurgery in the retina.
    Jensen PS; Grace KW; Attariwala R; Colgate JE; Glucksberg MR
    Graefes Arch Clin Exp Ophthalmol; 1997 Nov; 235(11):696-701. PubMed ID: 9407227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force sensing micro-forceps for robot assisted retinal surgery.
    Kuru I; Gonenc B; Balicki M; Handa J; Gehlbach P; Taylor RH; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1401-4. PubMed ID: 23366162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraoperative tremor monitoring for vitreoretinal microsurgery.
    Gomez-Blanco M; Riviere CN; Khosla PK
    Stud Health Technol Inform; 2000; 70():99-101. PubMed ID: 10977592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and development of miniature parallel robot for eye surgery.
    Sakai T; Harada K; Tanaka S; Ueta T; Noda Y; Sugita N; Mitsuishi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():371-4. PubMed ID: 25569974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do vitreoretinal patients benefit from the use of small-gauge instruments?
    Crafoord S
    Acta Ophthalmol; 2008 Mar; 86(2):120-1. PubMed ID: 18373794
    [No Abstract]   [Full Text] [Related]  

  • 9. Haptic interface for robot-assisted ophthalmic surgery.
    Barthel A; Trematerra D; Nasseri MA; Zapp D; Lohmann CP; Knoll A; Maier M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4906-9. PubMed ID: 26737392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Parallel Robot With Remote Centre-of-Motion for Eye Surgery: Design, Kinematics, Prototype, and Experiments.
    Jian Y; Jin Y; Price M; Moore J
    Int J Med Robot; 2024 Aug; 20(4):e2665. PubMed ID: 39137277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A prototype surgical manipulator for robotic intraocular micro surgery.
    Mulgaonkar AP; Hubschman JP; Bourges JL; Jordan BL; Cham C; Wilson JT; Tsao TC; Culjat MO
    Stud Health Technol Inform; 2009; 142():215-7. PubMed ID: 19377152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new, non-contact wide field viewing system for vitreous surgery.
    Landers MB; Peyman GA; Wessels IF; Whalen P; Morales V
    Am J Ophthalmol; 2003 Jul; 136(1):199-201. PubMed ID: 12834698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EyeSAM: graph-based localization and mapping of retinal vasculature during intraocular microsurgery.
    Mukherjee S; Kaess M; Martel JN; Riviere CN
    Int J Comput Assist Radiol Surg; 2019 May; 14(5):819-828. PubMed ID: 30790173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-assisted microsurgical forceps with haptic feedback for transoral laser microsurgery.
    Deshpande N; Chauhan M; Pacchierotti C; Prattichizzo D; Caldwell DG; Mattos LS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5156-5159. PubMed ID: 28269426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-stabilizing wide-angle contact lens for vitreous surgery.
    Shah VA; Chalam KV
    Retina; 2003 Oct; 23(5):667-9. PubMed ID: 14574252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-D position measurement for microsurgical evaluation.
    Riviere CN; Khosla PK
    Stud Health Technol Inform; 1999; 62():285-9. PubMed ID: 10538373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acousto-optic compensation of tremor for use in a handheld laser microsurgical instrument.
    Cernat R; Matei CE; Olteanu L; Riviere CN; Dumitraş DC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3862-4. PubMed ID: 17947056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 'The Microhand': a new concept of micro-forceps for ocular robotic surgery.
    Hubschman JP; Bourges JL; Choi W; Mozayan A; Tsirbas A; Kim CJ; Schwartz SD
    Eye (Lond); 2010 Feb; 24(2):364-7. PubMed ID: 19300461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery.
    Balicki M; Han JH; Iordachita I; Gehlbach P; Handa J; Taylor R; Kang J
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):108-15. PubMed ID: 20425977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of a compact, semi-robotic platform for an electronic surgical microscope].
    Lauer W; Esser M; Radermacher K
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():6-8. PubMed ID: 12451757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.