These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20033469)

  • 1. Comparison of different mixed cultures for bio-hydrogen production from ground wheat starch by combined dark and light fermentation.
    Ozmihci S; Kargi F
    J Ind Microbiol Biotechnol; 2010 Apr; 37(4):341-7. PubMed ID: 20033469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An unexpected negative influence of light intensity on hydrogen production by dark fermentative bacteria Clostridium beijerinckii.
    Zagrodnik R; Laniecki M
    Bioresour Technol; 2016 Jan; 200():1039-43. PubMed ID: 26602144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-hydrogen production using a two-stage fermentation process.
    Alalayah WM; Kalil MS; Kadhum AA; Jahim JM; Jaapar SZ; Alauj NM
    Pak J Biol Sci; 2009 Nov; 12(22):1462-7. PubMed ID: 20180320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark- and photofermentation in repeated fed-batch reactor.
    Zagrodnik R; Łaniecki M
    Bioresour Technol; 2017 Jan; 224():298-306. PubMed ID: 27810246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation.
    Zagrodnik R; Laniecki M
    Bioresour Technol; 2015 Oct; 194():187-95. PubMed ID: 26196419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilized purple bacteria for light-driven H2 production from starch and potato fermentation effluents.
    Tekucheva DN; Laurinavichene TV; Seibert M; Tsygankov AA
    Biotechnol Prog; 2011; 27(5):1248-56. PubMed ID: 21751433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological hydrogen production from palm oil mill effluent (POME) by anaerobic consortia and Clostridium beijerinckii.
    Rosa D; Medeiros ABP; Martinez-Burgos WJ; do Nascimento JR; de Carvalho JC; Sydney EB; Soccol CR
    J Biotechnol; 2020 Nov; 323():17-23. PubMed ID: 32569792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides.
    Kobayashi J; Yoshimune K; Komoriya T; Kohno H
    J Biosci Bioeng; 2011 Dec; 112(6):602-5. PubMed ID: 21903465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term H
    Laurinavichene T; Laurinavichius K; Shastik E; Tsygankov A
    Biotechnol Lett; 2018 Feb; 40(2):309-314. PubMed ID: 29189926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of pH and carbon sources on biohydrogen production by co-culture of Clostridium butyricum and Rhodobacter sphaeroides.
    Lee JY; Chen XJ; Lee EJ; Min KS
    J Microbiol Biotechnol; 2012 Mar; 22(3):400-6. PubMed ID: 22450797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora.
    Hussy I; Hawkes FR; Dinsdale R; Hawkes DL
    Biotechnol Bioeng; 2003 Dec; 84(6):619-26. PubMed ID: 14595774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11.
    Nath K; Kumar A; Das D
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):533-41. PubMed ID: 15666144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of light/dark cycle, mixing pattern and partial pressure of H2 on biohydrogen production by Rhodobacter sphaeroides ZX-5.
    Li X; Wang Y; Zhang S; Chu J; Zhang M; Huang M; Zhuang Y
    Bioresour Technol; 2011 Jan; 102(2):1142-8. PubMed ID: 20884205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of hydrogen fermentation of galactose by combined inoculation strategy.
    Sivagurunathan P; Anburajan P; Kumar G; Arivalagan P; Bakonyi P; Kim SH
    J Biosci Bioeng; 2017 Mar; 123(3):353-357. PubMed ID: 27815050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of aeration, agitation and light on biohydrogen production by Rhodobacter sphaeroides NCIMB 8253.
    Jaapar SZ; Kalil MS; Anuar N
    Pak J Biol Sci; 2009 Sep; 12(18):1253-9. PubMed ID: 20384278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibited growth of Clostridium butyricum in efficient H
    Laurinavichene T; Laurinavichius K; Shastik E; Tsygankov A
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10649-10658. PubMed ID: 27838838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of distillery wastewater for hydrogen production in one-stage and two-stage processes involving photofermentation.
    Laurinavichene T; Tekucheva D; Laurinavichius K; Tsygankov A
    Enzyme Microb Technol; 2018 Mar; 110():1-7. PubMed ID: 29310850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1.
    Chen SD; Sheu DS; Chen WM; Lo YC; Huang TI; Lin CY; Chang JS
    Biotechnol Prog; 2007; 23(6):1312-20. PubMed ID: 17924646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Fermentative Hydrogen Production from Cellulose and Starch with Mesophilic Bacterial Consortia.
    Zagrodnik R; Seifert K
    Pol J Microbiol; 2020 Sep; 69(1):109-120. PubMed ID: 32189481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of bacterial hydrogen production by ATP in mixed organic compounds extracted from Rhodobacter sphaeroides aerobically cultured under dark conditions.
    Lee HJ; Jang A; Park JM; Kim YH; Chung BW; Min J
    Bioresour Technol; 2012 Nov; 123():678-81. PubMed ID: 22939604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.