These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20033578)

  • 21. Automatically steering cardiac catheters in vivo with respiratory motion compensation.
    Loschak PM; Degirmenci A; Tschabrunn CM; Anter E; Howe RD
    Int J Rob Res; 2020 Apr; 39(5):586-597. PubMed ID: 32661450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Initial experience with a telerobotic system to remotely navigate and automatically reposition standard steerable EP catheters.
    Cercenelli L; Marcelli E; Plicchi G
    ASAIO J; 2007; 53(5):523-9. PubMed ID: 17885323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel four-wire-driven robotic catheter for radio-frequency ablation treatment.
    Yoshimitsu K; Kato T; Song SE; Hata N
    Int J Comput Assist Radiol Surg; 2014 Sep; 9(5):867-74. PubMed ID: 24510205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robotically-steerable catheters and their role in the visceral aortic segment.
    Riga C; Bicknell C; Hamady MS; Cheshire NJ
    J Cardiovasc Surg (Torino); 2011 Jun; 52(3):353-62. PubMed ID: 21577190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamically shaped magnetic fields: initial animal validation of a new remote electrophysiology catheter guidance and control system.
    Gang ES; Nguyen BL; Shachar Y; Farkas L; Farkas L; Marx B; Johnson D; Fishbein MC; Gaudio C; Kim SJ
    Circ Arrhythm Electrophysiol; 2011 Oct; 4(5):770-7. PubMed ID: 21690463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of robotic endovascular catheters for arch vessel cannulation.
    Riga CV; Bicknell CD; Hamady MS; Cheshire NJ
    J Vasc Surg; 2011 Sep; 54(3):799-809. PubMed ID: 21620623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair.
    de Ruiter QM; Moll FL; van Herwaarden JA
    J Vasc Surg; 2015 Jan; 61(1):256-64. PubMed ID: 25441011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of robotic endovascular catheters in fenestrated stent grafting.
    Riga CV; Cheshire NJ; Hamady MS; Bicknell CD
    J Vasc Surg; 2010 Apr; 51(4):810-9; discussion 819-20. PubMed ID: 20347674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling and estimation of tip contact force for steerable ablation catheters.
    Khoshnam M; Skanes AC; Patel RV
    IEEE Trans Biomed Eng; 2015 May; 62(5):1404-15. PubMed ID: 25585409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a force-reflecting robotic platform for cardiac catheter navigation.
    Park JW; Choi J; Pak HN; Song SJ; Lee JC; Park Y; Shin SM; Sun K
    Artif Organs; 2010 Nov; 34(11):1034-9. PubMed ID: 21092046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study.
    Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries.
    Bismuth J; Duran C; Stankovic M; Gersak B; Lumsden AB
    J Vasc Surg; 2013 Feb; 57(2 Suppl):14S-9S. PubMed ID: 23336849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and performance evaluation of a remote catheter navigation system.
    Thakur Y; Bax JS; Holdsworth DW; Drangova M
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1901-8. PubMed ID: 19336283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probabilistic Kinematic Model of a Robotic Catheter for 3D Position Control.
    Yu B; Fernández JG; Tan T
    Soft Robot; 2019 Apr; 6(2):184-194. PubMed ID: 30566032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application study of medical robots in vascular intervention.
    Lu WS; Xu WY; Zhang J; Liu D; Wang DM; Jia P; Li ZC; Wang TM; Zhang DP; Tian ZM; Zeng Y
    Int J Med Robot; 2011 Sep; 7(3):361-6. PubMed ID: 21732523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multifunctional catheters combining intracardiac ultrasound imaging and electrophysiology sensing.
    Stephens DN; Cannata J; Liu R; Zhao JZ; Shung KK; Nguyen H; Chia R; Dentinger A; Wildes D; Thomenius KE; Mahajan A; Shivkumar K; Kim K; O'Donnell M; Nikoozadeh A; Oralkan O; Khuri-Yakub PT; Sahn DJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1570-81. PubMed ID: 18986948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current status of endovascular catheter robotics.
    Lumsden AB; Bismuth J
    J Cardiovasc Surg (Torino); 2018 Jun; 59(3):310-316. PubMed ID: 29480668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A linear stepping endovascular intervention robot with variable stiffness and force sensing.
    He C; Wang S; Zuo S
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):671-682. PubMed ID: 29520525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feasibility and safety of remote endovascular catheter navigation in a porcine model.
    Bismuth J; Kashef E; Cheshire N; Lumsden AB
    J Endovasc Ther; 2011 Apr; 18(2):243-9. PubMed ID: 21521066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Vivo Demonstration of Photoacoustic Image Guidance and Robotic Visual Servoing for Cardiac Catheter-Based Interventions.
    Graham M; Assis F; Allman D; Wiacek A; Gonzalez E; Gubbi M; Dong J; Hou H; Beck S; Chrispin J; Bell MAL
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1015-1029. PubMed ID: 31502964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.