BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20033778)

  • 1. Powering an implantable minipump with a multi-layered printed circuit coil for drug infusion applications in rodents.
    Givrad TK; Maarek JM; Moore WH; Holschneider DP
    Ann Biomed Eng; 2010 Mar; 38(3):707-13. PubMed ID: 20033778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcutaneous RF-powered implantable minipump driven by a class-E transmitter.
    Moore WH; Holschneider DP; Givrad TK; Maarek JM
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1705-8. PubMed ID: 16916107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.
    Jo SE; Joung S; Suh JK; Kim YJ
    Med Biol Eng Comput; 2012 Sep; 50(9):973-80. PubMed ID: 22806430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
    Mei H; Thackston KA; Bercich RA; Jefferys JG; Irazoqui PP
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):775-785. PubMed ID: 27295647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The re-design at the transformer portion of transcutaneous energy transmission system for all implantable devices.
    Watada M; Saisho R; Kim YJ; Ohuchi K; Takatani S; Um YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1035-8. PubMed ID: 18002137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulative and experimental research on wireless power transmission technique in implantable medical device.
    Yu Y; Hao H; Wang W; Li L
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():923-6. PubMed ID: 19963736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-performance transcutaneous battery charger for medical implants.
    Artan N; Vanjani H; Vashist G; Fu Z; Bhakthavatsala S; Ludvig N; Medveczky G; Chao H
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1581-4. PubMed ID: 21096386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Powering implantable telemetry devices from localized magnetic fields.
    McCormick D; Hu AP; Nielsen P; Malpas S; Budgett D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2331-5. PubMed ID: 18002459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and optimization of printed spiral coils in air and muscle tissue environments.
    Jow UM; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6387-90. PubMed ID: 19964693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inductive coupling links for lowest misalignment effects in transcutaneous implanted devices.
    Abbas SM; Hannan MA; Samad SA; Hussain A
    Biomed Tech (Berl); 2014 Jun; 59(3):257-68. PubMed ID: 24445231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo RF powering for advanced biological research.
    Zimmerman MD; Chaimanonart N; Young DJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2506-9. PubMed ID: 17945719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wireless energy transfer platform for medical sensors and implantable devices.
    Zhang F; Hackworth SA; Liu X; Chen H; Sclabassi RJ; Sun M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1045-8. PubMed ID: 19964948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recording brain activity wirelessly. Inductive powering in miniature implantable neural recording devices.
    Irazoqui PP; Mody I; Judy JW
    IEEE Eng Med Biol Mag; 2005; 24(6):48-54. PubMed ID: 16382805
    [No Abstract]   [Full Text] [Related]  

  • 14. Inductive link design for miniature implants.
    Troyk PR; Rush AD
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():204-9. PubMed ID: 19964210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal frequency for powering millimeter-sized biomedical implants inside an inductively-powered homecage.
    Gougheri HS; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4804-4807. PubMed ID: 28269345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of multi-layer spiral inductors for remote powering of implantable sensors.
    Olivo J; Carrara S; De Micheli G
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):536-47. PubMed ID: 23893212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.
    Khan SR; Choi G
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a miniaturised drug delivery system with wireless power transfer and communication.
    Smith S; Tang TB; Terry JG; Stevenson JT; Flynn BW; Reekie HM; Murray AF; Gundlach AM; Renshaw D; Dhillon B; Ohtori A; Inoue Y; Walton AJ
    IET Nanobiotechnol; 2007 Oct; 1(5):80-6. PubMed ID: 17764377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors.
    Schormans M; Valente V; Demosthenous A
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.
    Eom K; Jeong J; Lee TH; Lee SE; Jun SB; Kim SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1859-62. PubMed ID: 24110073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.