These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
55 related articles for article (PubMed ID: 20033867)
21. The interleukin-1 beta-converting enzyme inhibitor pralnacasan reduces dextran sulfate sodium-induced murine colitis and T helper 1 T-cell activation. Loher F; Bauer C; Landauer N; Schmall K; Siegmund B; Lehr HA; Dauer M; Schoenharting M; Endres S; Eigler A J Pharmacol Exp Ther; 2004 Feb; 308(2):583-90. PubMed ID: 14610233 [TBL] [Abstract][Full Text] [Related]
22. Analysis of intestinal lymphocytes in mouse colitis mediated by transfer of CD4+, CD45RBhigh T cells to SCID recipients. Aranda R; Sydora BC; McAllister PL; Binder SW; Yang HY; Targan SR; Kronenberg M J Immunol; 1997 Apr; 158(7):3464-73. PubMed ID: 9120308 [TBL] [Abstract][Full Text] [Related]
23. Fucoidan derived from Cladosiphon okamuranus Tokida ameliorates murine chronic colitis through the down-regulation of interleukin-6 production on colonic epithelial cells. Matsumoto S; Nagaoka M; Hara T; Kimura-Takagi I; Mistuyama K; Ueyama S Clin Exp Immunol; 2004 Jun; 136(3):432-9. PubMed ID: 15147344 [TBL] [Abstract][Full Text] [Related]
24. Upregulation of interferon-gamma and interleukin-4, Th cell-derived cytokines by So-Shi-Ho-Tang (Sho-Saiko-To) occurs at the level of antigen presenting cells, but not CD4 T cells. Kang H; Choi TW; Ahn KS; Lee JY; Ham IH; Choi HY; Shim ES; Sohn NW J Ethnopharmacol; 2009 May; 123(1):6-14. PubMed ID: 19429332 [TBL] [Abstract][Full Text] [Related]
27. Non-toxic Stx derivatives from Escherichia coli possess adjuvant activity for mucosal immunity. Ohmura-Hoshino M; Yamamoto M; Yuki Y; Takeda Y; Kiyono H Vaccine; 2004 Sep; 22(27-28):3751-61. PubMed ID: 15315856 [TBL] [Abstract][Full Text] [Related]
28. CD8+ cytotoxic T cells induce relapsing colitis in normal mice. Nancey S; Holvöet S; Graber I; Joubert G; Philippe D; Martin S; Nicolas JF; Desreumaux P; Flourié B; Kaiserlian D Gastroenterology; 2006 Aug; 131(2):485-96. PubMed ID: 16890603 [TBL] [Abstract][Full Text] [Related]
29. [The effects of nuclear factor-kappaB decoy oligonucleotides on dextran sulphate sodium-induced colitis: experiment with mice]. Wu LG; Gan HT; Ou YQ; Peng L; Zhang M Zhonghua Yi Xue Za Zhi; 2006 May; 86(20):1394-9. PubMed ID: 16796922 [TBL] [Abstract][Full Text] [Related]
30. [Determination of evodiamine and rutaecarpine in Evodia rutaecarpa (Juss.) Benth after compatibility with Coptis chinensis Franch]. Xu YC; Wei LX; Zhou YX; Wang YL Zhongguo Zhong Yao Za Zhi; 2001 Dec; 26(12):846-7. PubMed ID: 12776335 [TBL] [Abstract][Full Text] [Related]
31. Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: attenuation of pro-inflammatory gene expression. Kwon KH; Murakami A; Tanaka T; Ohigashi H Biochem Pharmacol; 2005 Feb; 69(3):395-406. PubMed ID: 15652231 [TBL] [Abstract][Full Text] [Related]
32. Therapeutic potency of IL2-caspase 3 targeted treatment in a murine experimental model of inflammatory bowel disease. Shteingart S; Rapoport M; Grodzovski I; Sabag O; Lichtenstein M; Eavri R; Lorberboum-Galski H Gut; 2009 Jun; 58(6):790-8. PubMed ID: 18978179 [TBL] [Abstract][Full Text] [Related]
33. Antiinflammatory effects of a combined herbal preparation (RAH13) of Phellodendron amurense and Coptis chinensis in animal models of inflammation. Park EK; Rhee HI; Jung HS; Ju SM; Lee YA; Lee SH; Hong SJ; Yang HI; Yoo MC; Kim KS Phytother Res; 2007 Aug; 21(8):746-50. PubMed ID: 17450506 [TBL] [Abstract][Full Text] [Related]
34. Coptis chinensis Franch polysaccharides provide a dynamically regulation on intestinal microenvironment, based on the intestinal flora and mucosal immunity. Chen Q; Ren R; Zhang Q; Wu J; Zhang Y; Xue M; Yin D; Yang Y J Ethnopharmacol; 2021 Mar; 267():113542. PubMed ID: 33152428 [TBL] [Abstract][Full Text] [Related]
35. Increased migration of IgA lymphocytes to VIP nerve fibers after DSS-induced colitis. Ueno E; Hisajima T; Nakano M; Goris RC; Funakoshi K Histol Histopathol; 2011 Oct; 26(10):1317-26. PubMed ID: 21870335 [TBL] [Abstract][Full Text] [Related]
36. Coptidis alkaloids extracted from Coptis chinensis Franch attenuate IFN-γ-induced destruction of bone marrow cells. Li J; Meng X; Wang C; Zhang H; Chen H; Deng P; Liu J; Huandike M; Wei J; Chai L PLoS One; 2020; 15(7):e0236433. PubMed ID: 32706801 [TBL] [Abstract][Full Text] [Related]
37. Molecular authentication and quality control using a high performance liquid chromatography technique of Fructus Evodiae. Huang D; Li SX; Cai GX; Yue CH; Wei LJ; Zhang P Biol Pharm Bull; 2008 Feb; 31(2):312-5. PubMed ID: 18239294 [TBL] [Abstract][Full Text] [Related]
38. Coptis chinensis polysaccharides dynamically influence the paracellular absorption pathway in the small intestine by modulating the intestinal mucosal immunity microenvironment. Yang Y; Ren R; Chen Q; Zhang Q; Wu J; Yin D Phytomedicine; 2022 Sep; 104():154322. PubMed ID: 35839736 [TBL] [Abstract][Full Text] [Related]
39. Investigation of the differences between the "Cold" and "Hot" nature of Coptis chinensis Franch and its processed materials based on animal's temperature tropism. Zhou C; Wang J; Zhang X; Zhao Y; Xia X; Zhao H; Ren Y; Xiao X Sci China C Life Sci; 2009 Nov; 52(11):1073-80. PubMed ID: 19937206 [TBL] [Abstract][Full Text] [Related]
40. Four new caffeoylgluconic acid positional isomers from the fruits of Wang L; Wang DJ; Guo W; Sun KB; Huang NN; Sun R J Asian Nat Prod Res; 2019 Nov; 21(11):1104-1111. PubMed ID: 31154872 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]