These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20033932)

  • 61. Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles.
    Jang J; Yoon H
    Small; 2005 Dec; 1(12):1195-9. PubMed ID: 17193418
    [No Abstract]   [Full Text] [Related]  

  • 62. Growth kinetics and morphology of self-assembled monolayers formed by contact printing 7-octenyltrichlorosilane and octadecyltrichlorosilane on Si(100) wafers.
    Harada Y; Girolami GS; Nuzzo RG
    Langmuir; 2004 Dec; 20(25):10878-88. PubMed ID: 15568837
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Controlled collapse of high-aspect-ratio nanostructures.
    Duan H; Yang JK; Berggren KK
    Small; 2011 Sep; 7(18):2661-8. PubMed ID: 21809444
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine.
    Li Z; Lai X; Wang H; Mao D; Xing C; Wang D
    Nanotechnology; 2009 Jun; 20(24):245603. PubMed ID: 19471078
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A simple top-down/bottom-up approach to sectored, ordered arrays of nanoscopic elements using block copolymers.
    Park S; Yavuzcetin O; Kim B; Tuominen MT; Russell TP
    Small; 2009 May; 5(9):1064-9. PubMed ID: 19189333
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.
    Le F; Brandl DW; Urzhumov YA; Wang H; Kundu J; Halas NJ; Aizpurua J; Nordlander P
    ACS Nano; 2008 Apr; 2(4):707-18. PubMed ID: 19206602
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The large-scale synthesis of one-dimensional TiO2 nanostructures using palladium as catalyst at low temperature.
    Xia M; Zhang Q; Li H; Dai G; Yu H; Wang T; Zou B; Wang Y
    Nanotechnology; 2009 Feb; 20(5):055605. PubMed ID: 19417352
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Scanning probe oxidation lithography on Ta thin films.
    Okur S; Büjükköse S; Tari S
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5640-5. PubMed ID: 19198282
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanofabrication at high throughput and low cost.
    Wiley BJ; Qin D; Xia Y
    ACS Nano; 2010 Jul; 4(7):3554-9. PubMed ID: 20695512
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Facile synthesis of polyaniline "sunflowers" with arrays of oriented nanorods.
    Wang T; Zhong W; Ning X; Wang Y; Yang W
    J Colloid Interface Sci; 2009 Jun; 334(1):108-12. PubMed ID: 19380146
    [TBL] [Abstract][Full Text] [Related]  

  • 72. "Force-feedback" leveling of massively parallel arrays in polymer pen lithography.
    Liao X; Braunschweig AB; Mirkin CA
    Nano Lett; 2010 Apr; 10(4):1335-40. PubMed ID: 20184292
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Direct nanopatterning of 100 nm metal oxide periodic structures by Deep-UV immersion lithography.
    Stehlin F; Bourgin Y; Spangenberg A; Jourlin Y; Parriaux O; Reynaud S; Wieder F; Soppera O
    Opt Lett; 2012 Nov; 37(22):4651-3. PubMed ID: 23164868
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nanomotor lithography.
    Li J; Gao W; Dong R; Pei A; Sattayasamitsathit S; Wang J
    Nat Commun; 2014 Sep; 5():5026. PubMed ID: 25248549
    [TBL] [Abstract][Full Text] [Related]  

  • 75. UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection.
    Chen J; Zhou Y; Wang D; He F; Rotello VM; Carter KR; Watkins JJ; Nugen SR
    Lab Chip; 2015 Jul; 15(14):3086-94. PubMed ID: 26095586
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Desktop nanofabrication with massively multiplexed beam pen lithography.
    Liao X; Brown KA; Schmucker AL; Liu G; He S; Shim W; Mirkin CA
    Nat Commun; 2013; 4():2103. PubMed ID: 23868336
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Printable superhydrophilic-superhydrophobic micropatterns based on supported lipid layers.
    Li JS; Ueda E; Nallapaneni A; Li LX; Levkin PA
    Langmuir; 2012 Jun; 28(22):8286-91. PubMed ID: 22594681
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Urticarial allergic contact dermatitis caused by UV-cured printing ink.
    Higgins E; Collins P
    Contact Dermatitis; 2012 Jun; 66(6):340-1. PubMed ID: 22568841
    [No Abstract]   [Full Text] [Related]  

  • 79. Substrate-independent dip-pen nanolithography based on reactive coatings.
    Chen HY; Hirtz M; Deng X; Laue T; Fuchs H; Lahann J
    J Am Chem Soc; 2010 Dec; 132(51):18023-5. PubMed ID: 21138264
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge.
    Zheng Z; Daniel WL; Giam LR; Huo F; Senesi AJ; Zheng G; Mirkin CA
    Angew Chem Int Ed Engl; 2009; 48(41):7626-9. PubMed ID: 19731290
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.