These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
490 related articles for article (PubMed ID: 20034063)
1. Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy. Thind KK; Yamawaki R; Phanwar I; Zhang G; Wen X; Buckmaster PS J Comp Neurol; 2010 Mar; 518(5):647-67. PubMed ID: 20034063 [TBL] [Abstract][Full Text] [Related]
2. Synaptic input to dentate granule cell basal dendrites in a rat model of temporal lobe epilepsy. Thind KK; Ribak CE; Buckmaster PS J Comp Neurol; 2008 Jul; 509(2):190-202. PubMed ID: 18461605 [TBL] [Abstract][Full Text] [Related]
3. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. Kobayashi M; Buckmaster PS J Neurosci; 2003 Mar; 23(6):2440-52. PubMed ID: 12657704 [TBL] [Abstract][Full Text] [Related]
4. Hyperexcitability, interneurons, and loss of GABAergic synapses in entorhinal cortex in a model of temporal lobe epilepsy. Kumar SS; Buckmaster PS J Neurosci; 2006 Apr; 26(17):4613-23. PubMed ID: 16641241 [TBL] [Abstract][Full Text] [Related]
5. Rapamycin suppresses axon sprouting by somatostatin interneurons in a mouse model of temporal lobe epilepsy. Buckmaster PS; Wen X Epilepsia; 2011 Nov; 52(11):2057-64. PubMed ID: 21883182 [TBL] [Abstract][Full Text] [Related]
6. Pilocarpine-induced status epilepticus causes acute interneuron loss and hyper-excitatory propagation in rat insular cortex. Chen S; Fujita S; Koshikawa N; Kobayashi M Neuroscience; 2010 Mar; 166(1):341-53. PubMed ID: 20018232 [TBL] [Abstract][Full Text] [Related]
7. Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy. Yamawaki R; Thind K; Buckmaster PS J Comp Neurol; 2015 Feb; 523(2):281-97. PubMed ID: 25234294 [TBL] [Abstract][Full Text] [Related]
8. Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy. Zhang W; Yamawaki R; Wen X; Uhl J; Diaz J; Prince DA; Buckmaster PS J Neurosci; 2009 Nov; 29(45):14247-56. PubMed ID: 19906972 [TBL] [Abstract][Full Text] [Related]
9. Loss of cholecystokinin-containing terminals in temporal lobe epilepsy. Sun C; Sun J; Erisir A; Kapur J Neurobiol Dis; 2014 Feb; 62():44-55. PubMed ID: 24051276 [TBL] [Abstract][Full Text] [Related]
10. Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. Kobayashi M; Wen X; Buckmaster PS J Neurosci; 2003 Sep; 23(24):8471-9. PubMed ID: 13679415 [TBL] [Abstract][Full Text] [Related]
11. Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. Buckmaster PS; Jongen-Rêlo AL J Neurosci; 1999 Nov; 19(21):9519-29. PubMed ID: 10531454 [TBL] [Abstract][Full Text] [Related]
12. More Docked Vesicles and Larger Active Zones at Basket Cell-to-Granule Cell Synapses in a Rat Model of Temporal Lobe Epilepsy. Buckmaster PS; Yamawaki R; Thind K J Neurosci; 2016 Mar; 36(11):3295-308. PubMed ID: 26985038 [TBL] [Abstract][Full Text] [Related]
13. Degeneration and regeneration of GABAergic interneurons in the dentate gyrus of adult mice in experimental models of epilepsy. Wei D; Yang F; Wang Y; Yang F; Wu C; Wu SX; Jiang W CNS Neurosci Ther; 2015 Jan; 21(1):52-60. PubMed ID: 25272022 [TBL] [Abstract][Full Text] [Related]
14. Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus. Wittner L; Maglóczky Z; Borhegyi Z; Halász P; Tóth S; Eross L; Szabó Z; Freund TF Neuroscience; 2001; 108(4):587-600. PubMed ID: 11738496 [TBL] [Abstract][Full Text] [Related]
15. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. Buckmaster PS; Abrams E; Wen X J Comp Neurol; 2017 Aug; 525(11):2592-2610. PubMed ID: 28425097 [TBL] [Abstract][Full Text] [Related]
16. Reduced excitatory drive onto interneurons in the dentate gyrus after status epilepticus. Doherty J; Dingledine R J Neurosci; 2001 Mar; 21(6):2048-57. PubMed ID: 11245688 [TBL] [Abstract][Full Text] [Related]
17. Pathological alterations in GABAergic interneurons and reduced tonic inhibition in the basolateral amygdala during epileptogenesis. Fritsch B; Qashu F; Figueiredo TH; Aroniadou-Anderjaska V; Rogawski MA; Braga MF Neuroscience; 2009 Sep; 163(1):415-29. PubMed ID: 19540312 [TBL] [Abstract][Full Text] [Related]
18. Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. Buckmaster PS; Zhang GF; Yamawaki R J Neurosci; 2002 Aug; 22(15):6650-8. PubMed ID: 12151544 [TBL] [Abstract][Full Text] [Related]
19. Alterations of hippocampal GAbaergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy. André V; Marescaux C; Nehlig A; Fritschy JM Hippocampus; 2001; 11(4):452-68. PubMed ID: 11530850 [TBL] [Abstract][Full Text] [Related]
20. Enhanced but fragile inhibition in the dentate gyrus in vivo in the kainic acid model of temporal lobe epilepsy: a study using current source density analysis. Wu K; Leung LS Neuroscience; 2001; 104(2):379-96. PubMed ID: 11377842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]