BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20034125)

  • 1. Cellular evaluation of synthesized insulin/transferrin bioconjugates for oral insulin delivery using intelligent complexation hydrogels.
    Shofner JP; Phillips MA; Peppas NA
    Macromol Biosci; 2010 Mar; 10(3):299-306. PubMed ID: 20034125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates.
    Kavimandan NJ; Losi E; Peppas NA
    Biomaterials; 2006 Jul; 27(20):3846-54. PubMed ID: 16529810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel complexation hydrogels for oral peptide delivery: in vitro evaluation of their cytocompatibility and insulin-transport enhancing effects using Caco-2 cell monolayers.
    Ichikawa H; Peppas NA
    J Biomed Mater Res A; 2003 Nov; 67(2):609-17. PubMed ID: 14566804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of complexation hydrogels on insulin transport in intestinal epithelial cell models.
    Wood KM; Stone GM; Peppas NA
    Acta Biomater; 2010 Jan; 6(1):48-56. PubMed ID: 19481619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery.
    Wood KM; Stone GM; Peppas NA
    Biomacromolecules; 2008 Apr; 9(4):1293-8. PubMed ID: 18330990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular evaluation of insulin transmucosal delivery.
    López JE; Peppas NA
    J Biomater Sci Polym Ed; 2004; 15(4):385-96. PubMed ID: 15212324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexation hydrogels for oral protein delivery: an in vitro assessment of the insulin transport-enhancing effects following dissolution in simulated digestive fluids.
    Perakslis E; Tuesca A; Lowman A
    J Biomater Sci Polym Ed; 2007; 18(12):1475-90. PubMed ID: 17988515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.
    Sajeesh S; Vauthier C; Gueutin C; Ponchel G; Sharma CP
    Acta Biomater; 2010 Aug; 6(8):3072-80. PubMed ID: 20144748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEGylated insulin loaded complexation hydrogels for protected oral delivery.
    Coolich MK; Lanier OL; Cisneros E; Peppas NA
    J Control Release; 2023 Dec; 364():216-226. PubMed ID: 37890591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin.
    Sajeesh S; Bouchemal K; Marsaud V; Vauthier C; Sharma CP
    J Control Release; 2010 Nov; 147(3):377-84. PubMed ID: 20727924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination Strategy with Complexation Hydrogels and Cell-Penetrating Peptides for Oral Delivery of Insulin.
    Fukuoka Y; Khafagy ES; Goto T; Kamei N; Takayama K; Peppas NA; Takeda-Morishita M
    Biol Pharm Bull; 2018; 41(5):811-814. PubMed ID: 29709919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexation hydrogels for intestinal delivery of interferon beta and calcitonin.
    Kamei N; Morishita M; Chiba H; Kavimandan NJ; Peppas NA; Takayama K
    J Control Release; 2009 Mar; 134(2):98-102. PubMed ID: 19095021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitated nanoscale delivery of insulin across intestinal membrane models.
    Woitiski CB; Sarmento B; Carvalho RA; Neufeld RJ; Veiga F
    Int J Pharm; 2011 Jun; 412(1-2):123-31. PubMed ID: 21501675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro release behavior and stability of insulin in complexation hydrogels as oral drug delivery carriers.
    Kim B; Peppas NA
    Int J Pharm; 2003 Nov; 266(1-2):29-37. PubMed ID: 14559391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery.
    Sajeesh S; Bouchemal K; Sharma CP; Vauthier C
    Eur J Pharm Biopharm; 2010 Feb; 74(2):209-18. PubMed ID: 19737614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexation hydrogels for oral insulin delivery: effects of polymer dosing on in vivo efficacy.
    Tuesca A; Nakamura K; Morishita M; Joseph J; Peppas N; Lowman A
    J Pharm Sci; 2008 Jul; 97(7):2607-18. PubMed ID: 17876768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a P((MAA-co-NVP)-g-EG) Hydrogel Platform for Oral Protein Delivery: Effects of Hydrogel Composition on Environmental Response and Protein Partitioning.
    Steichen S; O'Connor C; Peppas NA
    Macromol Biosci; 2017 Jan; 17(1):. PubMed ID: 27689827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of poly(methacrylic acid-co-N-vinyl pyrrolidone) as a carrier for the oral delivery of therapeutic proteins using Caco-2 and HT29-MTX cell lines.
    Carr DA; Peppas NA
    J Biomed Mater Res A; 2010 Feb; 92(2):504-12. PubMed ID: 19213059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SEDDS for intestinal absorption of insulin: Application of Caco-2 and Caco-2/HT29 co-culture monolayers and intra-jejunal instillation in rats.
    Liu J; Werner U; Funke M; Besenius M; Saaby L; Fanø M; Mu H; Müllertz A
    Int J Pharm; 2019 Apr; 560():377-384. PubMed ID: 30790612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.