These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 20034448)

  • 41. Stimulation of the rat somatosensory cortex at different frequencies and pulse widths.
    Van Camp N; Verhoye M; Van der Linden A
    NMR Biomed; 2006 Feb; 19(1):10-7. PubMed ID: 16408324
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coupling of neural activation to blood flow in the somatosensory cortex of rats is time-intensity separable, but not linear.
    Ances BM; Zarahn E; Greenberg JH; Detre JA
    J Cereb Blood Flow Metab; 2000 Jun; 20(6):921-30. PubMed ID: 10894175
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antiepileptic effects of electroacupuncture vs vagus nerve stimulation on cortical epileptiform activities.
    Zhang JL; Zhang SP; Zhang HQ
    J Neurol Sci; 2008 Jul; 270(1-2):114-21. PubMed ID: 18394652
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantification of electroacupuncture-induced neural activity by analysis of functional neural imaging with monocrystalline iron oxide nanocolloid enhancement.
    Ho SC; Chiu JH; Yeh TC; Hsieh JC; Cheng HC; Cheng H; Ho LT
    Am J Chin Med; 2008; 36(3):493-504. PubMed ID: 18543384
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electroacupuncture versus celecoxib for neuropathic pain in rat SNL model.
    Lau WK; Lau YM; Zhang HQ; Wong SC; Bian ZX
    Neuroscience; 2010 Oct; 170(2):655-61. PubMed ID: 20654703
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optical recording of spatiotemporal activation of rat somatosensory and visual cortex in vitro.
    Haupt SS
    Neurosci Lett; 2000 Jun; 287(1):29-32. PubMed ID: 10841983
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Study of the cortical representation of whisker frequency selectivity using voltage-sensitive dye optical imaging.
    Tsytsarev V; Pumbo E; Tang Q; Chen CW; Kalchenko V; Chen Y
    Intravital; 2016; 5(1):e1142637. PubMed ID: 28243518
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The brain mapping on reinforcement acupuncture stimulation at ST36 (zusanli) evidenced by fMRI.
    Xiao YY; Chen XK; Du L; Pei RQ; Chen FY; Liu GR; Wu RH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1036-9. PubMed ID: 17946439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical imaging of the propagation patterns of neural responses in the rat sensory cortex: comparison under two different anesthetic conditions.
    Hama N; Ito SI; Hirota A
    Neuroscience; 2015 Jan; 284():125-133. PubMed ID: 25301752
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Negative hemodynamic response in the cortex: evidence opposing neuronal deactivation revealed via optical imaging and electrophysiological recording.
    Hu D; Huang L
    J Neurophysiol; 2015 Oct; 114(4):2152-61. PubMed ID: 26180117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acupuncture Induces Reduction in Limbic-Cortical Feedback of a Neuralgia Rat Model: A Dynamic Causal Modeling Study.
    Ma ZZ; Lu YC; Wu JJ; Xing XX; Hua XY; Xu JG
    Neural Plast; 2020; 2020():5052840. PubMed ID: 32148473
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatiotemporal mapping the neural correlates of acupuncture with MEG.
    Dhond RP; Witzel T; Hämäläinen M; Kettner N; Napadow V
    J Altern Complement Med; 2008 Jul; 14(6):679-88. PubMed ID: 18684075
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differences in cortical response to acupressure and electroacupuncture stimuli.
    Witzel T; Napadow V; Kettner NW; Vangel MG; Hämäläinen MS; Dhond RP
    BMC Neurosci; 2011 Jul; 12():73. PubMed ID: 21794103
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-speed CCD imaging system for monitoring neural activity in vivo and in vitro, using a voltage-sensitive dye.
    Takashima I; Ichikawa M; Iijima T
    J Neurosci Methods; 1999 Sep; 91(1-2):147-59. PubMed ID: 10522833
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Refractory periods observed by intrinsic signal and fluorescent dye imaging.
    Cannestra AF; Pouratian N; Shomer MH; Toga AW
    J Neurophysiol; 1998 Sep; 80(3):1522-32. PubMed ID: 9744956
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Imaging optically induced neural activity in the brain.
    Mahadevan-Jansen A; Cayce JM; Friedman R; Roe AW; Konrad PE; Hillman E; Jansen E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3379-81. PubMed ID: 21097240
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential cerebral response to somatosensory stimulation of an acupuncture point vs. two non-acupuncture points measured with EEG and fMRI.
    Nierhaus T; Pach D; Huang W; Long X; Napadow V; Roll S; Liang F; Pleger B; Villringer A; Witt CM
    Front Hum Neurosci; 2015; 9():74. PubMed ID: 25741269
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatially Structured Sparse Morphological Component Separation for voltage-sensitive dye optical imaging.
    Raguet H; Monier C; Foubert L; Ferezou I; Fregnac Y; Peyré G
    J Neurosci Methods; 2016 Jan; 257():76-96. PubMed ID: 26434707
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex.
    Lippert MT; Takagaki K; Kayser C; Ohl FW
    PLoS One; 2013; 8(5):e63631. PubMed ID: 23667650
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Frequency-domain measurement of neuronal activity using dynamic optical coherence tomography.
    Lee J; Boas DA
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2643-6. PubMed ID: 23366468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.