These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A single-ossicle ear: Acoustic response and mechanical properties measured in duck. Muyshondt PGG; Soons JAM; De Greef D; Pires F; Aerts P; Dirckx JJJ Hear Res; 2016 Oct; 340():35-42. PubMed ID: 26723104 [TBL] [Abstract][Full Text] [Related]
23. A sum of simple and complex motions on the eardrum and manubrium in gerbil. de La Rochefoucauld O; Olson ES Hear Res; 2010 May; 263(1-2):9-15. PubMed ID: 19878713 [TBL] [Abstract][Full Text] [Related]
24. Full-field transient vibrometry of the human tympanic membrane by local phase correlation and high-speed holography. Dobrev I; Furlong C; Cheng JT; Rosowski JJ J Biomed Opt; 2014 Sep; 19(9):96001. PubMed ID: 25191832 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles. Chang EW; Cheng JT; Röösli C; Kobler JB; Rosowski JJ; Yun SH Hear Res; 2013 Oct; 304():49-56. PubMed ID: 23811181 [TBL] [Abstract][Full Text] [Related]
26. Vibration measurement of the tympanic membrane of guinea pig temporal bones using time-averaged speckle pattern interferometry. Wada H; Ando M; Takeuchi M; Sugawara H; Koike T; Kobayashi T; Hozawa K; Gemma T; Nara M J Acoust Soc Am; 2002 May; 111(5 Pt 1):2189-99. PubMed ID: 12051438 [TBL] [Abstract][Full Text] [Related]
27. Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid. Zhang X; Guan X; Nakmali D; Palan V; Pineda M; Gan RZ J Assoc Res Otolaryngol; 2014 Dec; 15(6):867-81. PubMed ID: 25106467 [TBL] [Abstract][Full Text] [Related]
28. Sequential multipoint motion of the tympanic membrane measured by laser Doppler vibrometry: preliminary results for normal tympanic membrane. Kunimoto Y; Hasegawa K; Arii S; Kataoka H; Yazama H; Kuya J; Kitano H Otol Neurotol; 2014 Apr; 35(4):719-24. PubMed ID: 24317215 [TBL] [Abstract][Full Text] [Related]
29. [Influence of liquid volume in the middle ear on tympanic membrane vibration (experimental study by holographic interferometry)]. Okano K Nihon Jibiinkoka Gakkai Kaiho; 1990 Nov; 93(11):1847-55. PubMed ID: 2280306 [TBL] [Abstract][Full Text] [Related]
30. Holographic otoscope using dual-shot-acquisition for the study of eardrum biomechanical displacements. Flores-Moreno JM; Mendoza Santoyo F; Estrada Rico JC Appl Opt; 2013 Mar; 52(8):1731-42. PubMed ID: 23478779 [TBL] [Abstract][Full Text] [Related]
31. Quasi-static and dynamic motions of the columellar footplate in ostrich (Struthio camelus) measured ex vivo. Muyshondt PGG; Claes R; Aerts P; Dirckx JJJ Hear Res; 2018 Jan; 357():10-24. PubMed ID: 29154211 [TBL] [Abstract][Full Text] [Related]
32. Acoustic vibration of the amphibian eardrum studied by white noise analysis and holographic interferometry. Anson M; Pinder AC; Keating MJ; Chung SH J Acoust Soc Am; 1985 Sep; 78(3):916-23. PubMed ID: 3875641 [TBL] [Abstract][Full Text] [Related]
33. [Experimental study of vibration analysis in middle ear models by holographic interferometry. Effects of the cross-sectioned area of aditus on the vibration of tympanic membrane]. Ishihara M Nihon Jibiinkoka Gakkai Kaiho; 1989 May; 92(5):726-35. PubMed ID: 2614565 [TBL] [Abstract][Full Text] [Related]
34. Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography. Khaleghi M; Guignard J; Furlong C; Rosowski JJ J Biomed Opt; 2015; 20(11):111202. PubMed ID: 25984986 [TBL] [Abstract][Full Text] [Related]
35. High-Speed Holographic Shape and Full-Field Displacement Measurements of the Tympanic Membrane in Normal and Experimentally Simulated Pathological Ears. Tang H; Razavi P; Pooladvand K; Psota P; Maftoon N; Rosowski JJ; Furlong C; Cheng JT Appl Sci (Basel); 2019 Jul; 9(14):. PubMed ID: 32802482 [TBL] [Abstract][Full Text] [Related]
36. Imaging velocities of a vibrating object by stroboscopic sideband holography. Verpillat F; Joud F; Atlan M; Gross M Opt Express; 2012 Sep; 20(20):22860-71. PubMed ID: 23037435 [TBL] [Abstract][Full Text] [Related]
37. Real-time imaging of in-vitro human middle ear using high frequency ultrasound. Landry TG; Rainsbury JW; Adamson RB; Bance ML; Brown JA Hear Res; 2015 Aug; 326():1-7. PubMed ID: 25818516 [TBL] [Abstract][Full Text] [Related]
38. Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry. Subhash HM; Nguyen-Huynh A; Wang RK; Jacques SL; Choudhury N; Nuttall AL J Biomed Opt; 2012 Jun; 17(6):060505. PubMed ID: 22734728 [TBL] [Abstract][Full Text] [Related]
39. Numerical model characterization of the sound transmission mechanism in the tympanic membrane from a high-speed digital holographic experiment in transient regime. Garcia-Manrique J; Furlong C; Gonzalez-Herrera A; Cheng JT Acta Biomater; 2023 Mar; 159():63-73. PubMed ID: 36708849 [TBL] [Abstract][Full Text] [Related]
40. Computerized laser Doppler interferometric scanning of the vibrating tympanic membrane. Konrádsson KS; Ivarsson A; Bank G Scand Audiol; 1987; 16(3):159-66. PubMed ID: 3324293 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]