These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 20034549)

  • 41. [Vibration analysis in middle ear model with artificial ossicles, total ossicular replacement prosthesis (TORP) by holographic interferometry].
    Kawakami S
    Nihon Jibiinkoka Gakkai Kaiho; 1987 Apr; 90(4):536-46. PubMed ID: 3625373
    [No Abstract]   [Full Text] [Related]  

  • 42. [Effects of the perforation of the tympanic membrane on its vibration--with special reference to an experimental study by holographic interferometry].
    Maeta M
    Nihon Jibiinkoka Gakkai Kaiho; 1991 Feb; 94(2):231-40. PubMed ID: 2037952
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface Motion of Tympanic Membrane in a Chinchilla Model of Acute Otitis Media.
    Wang X; Gan RZ
    J Assoc Res Otolaryngol; 2018 Dec; 19(6):619-635. PubMed ID: 30191424
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical coherence tomographic measurements of the sound-induced motion of the ossicular chain in chinchillas: Additional modes of ossicular motion enhance the mechanical response of the chinchilla middle ear at higher frequencies.
    Rosowski JJ; Ramier A; Cheng JT; Yun SH
    Hear Res; 2020 Oct; 396():108056. PubMed ID: 32836020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of middle ear pressure change on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Acta Otolaryngol; 1997 May; 117(3):390-5. PubMed ID: 9199525
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pressure buffering by the tympanic membrane. In vivo measurements of middle ear pressure fluctuations during elevator motion.
    Padurariu S; de Greef D; Jacobsen H; Nlandu Kamavuako E; Dirckx JJ; Gaihede M
    Hear Res; 2016 Oct; 340():113-120. PubMed ID: 26701784
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane.
    Khaleghi M; Lu W; Dobrev I; Cheng JT; Furlong C; Rosowski JJ
    Opt Eng; 2013 Oct; 52(10):101916. PubMed ID: 24790255
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interferometric measurement of the amplitude and phase of tympanic membrane vibrations in cat.
    Decraemer WF; Khanna SM; Funnell WR
    Hear Res; 1989 Mar; 38(1-2):1-17. PubMed ID: 2708151
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Ossicular vibration in human temporal bones].
    Aritomo H
    Nihon Jibiinkoka Gakkai Kaiho; 1989 Sep; 92(9):1359-70. PubMed ID: 2585204
    [TBL] [Abstract][Full Text] [Related]  

  • 50. External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane.
    Bergevin C; Olson ES
    J Acoust Soc Am; 2014 Mar; 135(3):1294-312. PubMed ID: 24606269
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional laser Doppler interferometric display of human tympanic membrane vibrations at two different frequencies and sound pressure levels.
    Konrádsson KS; Ivarsson A; Harris S
    Acta Otolaryngol Suppl; 1988; 449():183-6. PubMed ID: 3201945
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of increased inner ear pressure on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Otolaryngol Head Neck Surg; 1998 May; 118(5):703-8. PubMed ID: 9591878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Dynamic behavior of guinea pig middle ear].
    Suzaki Y; Wada H; Ohyama K; Kobayasi T; Houzawa K; Takasaka T
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Mar; 100(3):342-50. PubMed ID: 9103847
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Topography of vibration frequency responses on the bony tympano-periotic complex of the pilot whale Globicephala macrorhynchus.
    Tsur I; Shaviv N; Bronstein I; Elmakis D; Knafo O; Werner YL
    Hear Res; 2019 Dec; 384():107810. PubMed ID: 31726328
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Holographic vibration analysis of the ossicular chain.
    Gundersen T; Hogmoen K
    Acta Otolaryngol; 1976; 82(1-2):16-25. PubMed ID: 948981
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimal ossicular site for maximal vibration transmissions to coupled transducers.
    Chung J; Song WJ; Sim JH; Kim W; Oh SH
    Hear Res; 2013 Jul; 301():137-45. PubMed ID: 23337694
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sound wave propagation on the human skull surface with bone conduction stimulation.
    Dobrev I; Sim JH; Stenfelt S; Ihrle S; Gerig R; Pfiffner F; Eiber A; Huber AM; Röösli C
    Hear Res; 2017 Nov; 355():1-13. PubMed ID: 28964568
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sound pressure distribution within natural and artificial human ear canals: forward stimulation.
    Ravicz ME; Tao Cheng J; Rosowski JJ
    J Acoust Soc Am; 2014 Dec; 136(6):3132. PubMed ID: 25480061
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure.
    Jiang S; Smith K; Gan RZ
    Hear Res; 2019 Jul; 378():43-52. PubMed ID: 30630647
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.
    Puria S; Allen JB
    J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.