These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 20034622)

  • 1. Single-step bioconversion for the preparation of L-gulose and L-galactose.
    Woodyer RD; Christ TN; Deweese KA
    Carbohydr Res; 2010 Feb; 345(3):363-8. PubMed ID: 20034622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient whole-cell biosynthesis of l-gulose by coupling mannitol-1-dehydrogenase with NADH oxidase.
    Zhang B; Bian L; Huang P; Zhao L; Chen Y; Wu X
    Enzyme Microb Technol; 2021 Aug; 148():109815. PubMed ID: 34116746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration.
    Parmentier S; Arnaut F; Soetaert W; Vandamme EJ
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):255-62. PubMed ID: 15296174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D: -Mannitol formation from D: -glucose in a whole-cell biotransformation with recombinant Escherichia coli.
    Kaup B; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2005 Dec; 69(4):397-403. PubMed ID: 15841369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-Rhamnose isomerase and its use for biotechnological production of rare sugars.
    Xu W; Zhang W; Zhang T; Jiang B; Mu W
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):2985-92. PubMed ID: 26875877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens.
    Slatner M; Nidetzky B; Kulbe KD
    Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The alternative D-galactose degrading pathway of Aspergillus nidulans proceeds via L-sorbose.
    Fekete E; Karaffa L; Sándor E; Bányai I; Seiboth B; Gyémánt G; Sepsi A; Szentirmai A; Kubicek CP
    Arch Microbiol; 2004 Jan; 181(1):35-44. PubMed ID: 14624333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of D-gulose from disaccharide lactitol using microbial and chemical methods.
    Morimoto K; Shimonishi T; Miyake S; Takata G; Izumori K
    Biosci Biotechnol Biochem; 2013; 77(2):253-8. PubMed ID: 23391912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and expression of d-glucoside 3-dehydrogenase from Rhizobium sp. S10 in Escherichia coli and its application for d-gulose production.
    Yotsombat A; Hasegawa T; Mino K; Takata G
    Protein Expr Purif; 2019 Apr; 156():58-65. PubMed ID: 30629972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution toward improved production of L-ribose from ribitol.
    Christ TN; Deweese KA; Woodyer RD
    Comb Chem High Throughput Screen; 2010 May; 13(4):302-8. PubMed ID: 20156148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient production of the rare sugar l-gulose using a wheat-bran culture extract of Penicillium sp. KU-1.
    Kuroishikawa T; Yoshihara A; Furuta I; Mochizuki S; Watanabe A; Izumori K; Asada Y
    Biosci Biotechnol Biochem; 2021 Jul; 85(8):1915-1918. PubMed ID: 34124745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical synthesis of the medicinal sugar l-gulose using fungal alditol oxidase.
    Kuroishikawa T; Shinmyo D; Yoshihara A; Takata G; Watanabe A; Ashiuchi M; Izumori K; Asada Y
    Biochem Biophys Res Commun; 2021 Oct; 575():85-89. PubMed ID: 34461440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial production of L-ascorbic acid from D-sorbitol, L-sorbose, L-gulose, and L-sorbosone by Ketogulonicigenium vulgare DSM 4025.
    Sugisawa T; Miyazaki T; Hoshino T
    Biosci Biotechnol Biochem; 2005 Mar; 69(3):659-62. PubMed ID: 15785002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermotoga maritima TM0298 is a highly thermostable mannitol dehydrogenase.
    Song SH; Ahluwalia N; Leduc Y; Delbaere LT; Vieille C
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):485-95. PubMed ID: 18719905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of D-tagatose at high temperatures using immobilized Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana.
    Hong YH; Lee DW; Lee SJ; Choe EA; Kim SB; Lee YH; Cheigh CI; Pyun YR
    Biotechnol Lett; 2007 Apr; 29(4):569-74. PubMed ID: 17206372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactobacillus reuteri ATCC 53608 mdh gene cloning and recombinant mannitol dehydrogenase characterization.
    Sasaki Y; Laivenieks M; Zeikus JG
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):36-41. PubMed ID: 15630578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel hydantoinase process using recombinant Escherichia coli cells with dihydropyrimidinase and L-N-carbamoylase activities as biocatalyst for the production of L-homophenylalanine.
    Kao CH; Lo HH; Hsu SK; Hsu WH
    J Biotechnol; 2008 Apr; 134(3-4):231-9. PubMed ID: 18342972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High production of D-tagatose by the addition of boric acid.
    Lim BC; Kim HJ; Oh DK
    Biotechnol Prog; 2007; 23(4):824-8. PubMed ID: 17583351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli.
    Báez-Viveros JL; Osuna J; Hernández-Chávez G; Soberón X; Bolívar F; Gosset G
    Biotechnol Bioeng; 2004 Aug; 87(4):516-24. PubMed ID: 15286989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective synthesis of L-homophenylalanine by whole cells of recombinant Escherichia coli expressing L-aminoacylase and N-acylamino acid racemase genes from Deinococcus radiodurans BCRC12827.
    Hsu SK; Lo HH; Kao CH; Lee DS; Hsu WH
    Biotechnol Prog; 2006; 22(6):1578-84. PubMed ID: 17137304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.