These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 20034664)

  • 1. A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer.
    Puskas JE; Foreman-Orlowski EA; Lim GT; Porosky SE; Evancho-Chapman MM; Schmidt SP; El Fray M; Piatek M; Prowans P; Lovejoy K
    Biomaterials; 2010 Mar; 31(9):2477-88. PubMed ID: 20034664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of carbon black reinforcement on the dynamic fatigue and creep of polyisobutylene-based biomaterials.
    Götz C; Lim GT; Puskas JE; Altstädt V
    J Mech Behav Biomed Mater; 2014 Nov; 39():355-65. PubMed ID: 25173236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement.
    Puskas JE; Chen Y
    Biomacromolecules; 2004; 5(4):1141-54. PubMed ID: 15244424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.
    Sridhar V; Xiu ZZ; Xu D; Lee SH; Kim JK; Kang DJ; Bang DS
    Waste Manag; 2009 Mar; 29(3):1058-66. PubMed ID: 18838261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly hydrophobic electrospun fiber mats from polyisobutylene-based thermoplastic elastomers.
    Lim GT; Puskas JE; Reneker DH; Jákli A; Horton WE
    Biomacromolecules; 2011 May; 12(5):1795-9. PubMed ID: 21449616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoplastic biodegradable elastomers based on ε-caprolactone and L-lactide block co-polymers: a new synthetic approach.
    Lipik VT; Kong JF; Chattopadhyay S; Widjaja LK; Liow SS; Venkatraman SS; Abadie MJ
    Acta Biomater; 2010 Nov; 6(11):4261-70. PubMed ID: 20566308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterization, properties, and drug release of poly(alkyl methacrylate-b-isobutylene-b-alkyl methacrylate).
    Cho JC; Cheng G; Feng D; Faust R; Richard R; Schwarz M; Chan K; Boden M
    Biomacromolecules; 2006 Nov; 7(11):2997-3007. PubMed ID: 17096524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility and fatigue properties of polystyrene-polyisobutylene-polystyrene, an emerging thermoplastic elastomeric biomaterial.
    El Fray M; Prowans P; Puskas JE; Altstädt V
    Biomacromolecules; 2006 Mar; 7(3):844-50. PubMed ID: 16529422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of thermal cycling on flexural properties of carbon-graphite fiber-reinforced polymers.
    Segerström S; Ruyter IE
    Dent Mater; 2009 Jul; 25(7):845-51. PubMed ID: 19230964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface characterization and protein interactions of segmented polyisobutylene-based thermoplastic polyurethanes.
    Cozzens D; Luk A; Ojha U; Ruths M; Faust R
    Langmuir; 2011 Dec; 27(23):14160-8. PubMed ID: 22023013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the mechanical properties of composites from elastomeric to rigid thermoplastic by controlled addition of carbon nanotubes.
    Khan U; May P; O'Neill A; Vilatela JJ; Windle AH; Coleman JN
    Small; 2011 Jun; 7(11):1579-86. PubMed ID: 21538861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remotely actuated polymer nanocomposites--stress-recovery of carbon-nanotube-filled thermoplastic elastomers.
    Koerner H; Price G; Pearce NA; Alexander M; Vaia RA
    Nat Mater; 2004 Feb; 3(2):115-20. PubMed ID: 14743213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of nano-oxide concentration on the mechanical properties of a maxillofacial silicone elastomer.
    Han Y; Kiat-amnuay S; Powers JM; Zhao Y
    J Prosthet Dent; 2008 Dec; 100(6):465-73. PubMed ID: 19033031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured films of amphiphilic fluorinated block copolymers for fouling release application.
    Martinelli E; Agostini S; Galli G; Chiellini E; Glisenti A; Pettitt ME; Callow ME; Callow JA; Graf K; Bartels FW
    Langmuir; 2008 Nov; 24(22):13138-47. PubMed ID: 18928304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of nanopore morphology on cell viability on mesoporous polymer and carbon surfaces.
    Chavez VL; Song L; Barua S; Li X; Wu Q; Zhao D; Rege K; Vogt BD
    Acta Biomater; 2010 Aug; 6(8):3035-43. PubMed ID: 20144750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical characterisation of polyurethane elastomer for biomedical applications.
    Kanyanta V; Ivankovic A
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):51-62. PubMed ID: 19878902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New biomaterial as a promising alternative to silicone breast implants.
    Teck Lim G; Valente SA; Hart-Spicer CR; Evancho-Chapman MM; Puskas JE; Horne WI; Schmidt SP
    J Mech Behav Biomed Mater; 2013 May; 21():47-56. PubMed ID: 23466517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers.
    Meriç G; Ruyter IE
    Dent Mater; 2007 Sep; 23(9):1157-63. PubMed ID: 17118440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoplastic polyurethanes from undecylenic acid-based soft segments: structural features and release properties.
    Lluch C; Lligadas G; Ronda JC; Galià M; Cádiz V
    Macromol Biosci; 2013 May; 13(5):614-22. PubMed ID: 23460383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.