These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 20034721)
1. Motor adaptation and manual transfer: insight into the persistent nature of sensorimotor representations. Green S; Grierson LE; Dubrowski A; Carnahan H Brain Cogn; 2010 Apr; 72(3):385-93. PubMed ID: 20034721 [TBL] [Abstract][Full Text] [Related]
2. Continuous theta-burst stimulation over the dorsal premotor cortex interferes with associative learning during object lifting. Nowak DA; Berner J; Herrnberger B; Kammer T; Grön G; Schönfeldt-Lecuona C Cortex; 2009 Apr; 45(4):473-82. PubMed ID: 18400218 [TBL] [Abstract][Full Text] [Related]
3. Illusions of force perception: the role of sensori-motor predictions, visual information, and motor errors. Diedrichsen J; Verstynen T; Hon A; Zhang Y; Ivry RB J Neurophysiol; 2007 May; 97(5):3305-13. PubMed ID: 17344369 [TBL] [Abstract][Full Text] [Related]
4. Opposite perceptual and sensorimotor responses to a size-weight illusion. Grandy MS; Westwood DA J Neurophysiol; 2006 Jun; 95(6):3887-92. PubMed ID: 16641383 [TBL] [Abstract][Full Text] [Related]
5. Size-weight illusion, anticipation, and adaptation of fingertip forces in patients with cerebellar degeneration. Rabe K; Brandauer B; Li Y; Gizewski ER; Timmann D; Hermsdörfer J J Neurophysiol; 2009 Feb; 101(2):569-79. PubMed ID: 19036861 [TBL] [Abstract][Full Text] [Related]
6. Neural correlates associated with intermanual transfer of sensorimotor adaptation. Anguera JA; Russell CA; Noll DC; Seidler RD Brain Res; 2007 Dec; 1185():136-51. PubMed ID: 17996854 [TBL] [Abstract][Full Text] [Related]
7. Intermanual transfer of sensorimotor memory for grip force when lifting objects: the role of wrist angulation. Bensmail D; Sarfeld AS; Fink GR; Nowak DA Clin Neurophysiol; 2010 Mar; 121(3):402-7. PubMed ID: 20004612 [TBL] [Abstract][Full Text] [Related]
8. Brain activity during predictable and unpredictable weight changes when lifting objects. Schmitz C; Jenmalm P; Ehrsson HH; Forssberg H J Neurophysiol; 2005 Mar; 93(3):1498-509. PubMed ID: 15385599 [TBL] [Abstract][Full Text] [Related]
9. Predictive force programming in the grip-lift task: the role of memory links between arbitrary cues and object weight. Ameli M; Dafotakis M; Fink GR; Nowak DA Neuropsychologia; 2008; 46(9):2383-8. PubMed ID: 18455203 [TBL] [Abstract][Full Text] [Related]
10. Grip forces isolated from knowledge about object properties following a left parietal lesion. Li Y; Randerath J; Goldenberg G; Hermsdörfer J Neurosci Lett; 2007 Oct; 426(3):187-91. PubMed ID: 17904743 [TBL] [Abstract][Full Text] [Related]
11. Lack of predictive control in lifting series of virtual objects by individuals with diplegic cerebral palsy. Mawase F; Bar-Haim S; Karniel A IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):686-95. PubMed ID: 21984525 [TBL] [Abstract][Full Text] [Related]
12. Practice makes perfect, but only with the right hand: sensitivity to perceptual illusions with awkward grasps decreases with practice in the right but not the left hand. Gonzalez CL; Ganel T; Whitwell RL; Morrissey B; Goodale MA Neuropsychologia; 2008 Jan; 46(2):624-31. PubMed ID: 17950763 [TBL] [Abstract][Full Text] [Related]
13. Sensorimotor memory for fingertip forces during object lifting: the role of the primary motor cortex. Berner J; Schönfeldt-Lecuona C; Nowak DA Neuropsychologia; 2007 Apr; 45(8):1931-8. PubMed ID: 17239907 [TBL] [Abstract][Full Text] [Related]
14. Object properties and cognitive load in the formation of associative memory during precision lifting. Li Y; Randerath J; Bauer H; Marquardt C; Goldenberg G; Hermsdörfer J Behav Brain Res; 2009 Jan; 196(1):123-30. PubMed ID: 18722479 [TBL] [Abstract][Full Text] [Related]
15. Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems. Hermsdörfer J; Hagl E; Nowak DA Hum Mov Sci; 2004 Nov; 23(5):643-62. PubMed ID: 15589626 [TBL] [Abstract][Full Text] [Related]
16. Impaired generalization of weight-related information during grasping in cerebellar degeneration. Nowak DA; Hermsdörfer J; Timmann D; Rost K; Topka H Neuropsychologia; 2005; 43(1):20-7. PubMed ID: 15488901 [TBL] [Abstract][Full Text] [Related]
17. Dissociable neural mechanisms for determining the perceived heaviness of objects and the predicted weight of objects during lifting: an fMRI investigation of the size-weight illusion. Chouinard PA; Large ME; Chang EC; Goodale MA Neuroimage; 2009 Jan; 44(1):200-12. PubMed ID: 18801445 [TBL] [Abstract][Full Text] [Related]
18. Representing multiple object weights: competing priors and sensorimotor memories. Baugh LA; Yak A; Johansson RS; Flanagan JR J Neurophysiol; 2016 Oct; 116(4):1615-1625. PubMed ID: 27385795 [TBL] [Abstract][Full Text] [Related]
19. The impact of unilateral brain damage on weight perception, sensorimotor anticipation, and fingertip force adaptation. Buckingham G; Bieńkiewicz M; Rohrbach N; Hermsdörfer J Vision Res; 2015 Oct; 115(Pt B):231-7. PubMed ID: 25711977 [TBL] [Abstract][Full Text] [Related]
20. Human limb-specific and non-limb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. Naito E; Nakashima T; Kito T; Aramaki Y; Okada T; Sadato N Eur J Neurosci; 2007 Jun; 25(11):3476-87. PubMed ID: 17553017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]