These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 20035570)

  • 1. Arsenic-induced carcinogenesis--oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment.
    Kitchin KT; Conolly R
    Chem Res Toxicol; 2010 Feb; 23(2):327-35. PubMed ID: 20035570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research toward the development of a biologically based dose response assessment for inorganic arsenic carcinogenicity: a progress report.
    Clewell HJ; Thomas RS; Gentry PR; Crump KS; Kenyon EM; El-Masri HA; Yager JW
    Toxicol Appl Pharmacol; 2007 Aug; 222(3):388-98. PubMed ID: 17499324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites.
    Kitchin KT
    Toxicol Appl Pharmacol; 2001 May; 172(3):249-61. PubMed ID: 11312654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic, mode of action at biologically plausible low doses: what are the implications for low dose cancer risk?
    Snow ET; Sykora P; Durham TR; Klein CB
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):557-64. PubMed ID: 15996700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroform mode of action: implications for cancer risk assessment.
    Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer risk assessment for 1,3-butadiene: data integration opportunities.
    Preston RJ
    Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk assessment of arsenic-induced internal cancer at long-term low dose exposure.
    Liao CM; Shen HH; Chen CL; Hsu LI; Lin TL; Chen SC; Chen CJ
    J Hazard Mater; 2009 Jun; 165(1-3):652-63. PubMed ID: 19062162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a quantitative model incorporating key events in a hepatotoxic mode of action to predict tumor incidence.
    Luke NS; Sams R; DeVito MJ; Conolly RB; El-Masri HA
    Toxicol Sci; 2010 May; 115(1):253-66. PubMed ID: 20106946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic-induced bladder cancer in an animal model.
    Cohen SM; Ohnishi T; Arnold LL; Le XC
    Toxicol Appl Pharmacol; 2007 Aug; 222(3):258-63. PubMed ID: 17109909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research approaches to address uncertainties in the risk assessment of arsenic in drinking water.
    Hughes MF; Kenyon EM; Kitchin KT
    Toxicol Appl Pharmacol; 2007 Aug; 222(3):399-404. PubMed ID: 17379267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic carcinogenesis in the skin.
    Yu HS; Liao WT; Chai CY
    J Biomed Sci; 2006 Sep; 13(5):657-66. PubMed ID: 16807664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How can biologically-based modeling of arsenic kinetics and dynamics inform the risk assessment process? - A workshop review.
    Kenyon EM; Klimecki WT; El-Masri H; Conolly RB; Clewell HJ; Beck BD
    Toxicol Appl Pharmacol; 2008 Nov; 232(3):359-68. PubMed ID: 18687352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oral exposure to inorganic arsenic: evaluation of its carcinogenic and non-carcinogenic effects.
    Schuhmacher-Wolz U; Dieter HH; Klein D; Schneider K
    Crit Rev Toxicol; 2009; 39(4):271-98. PubMed ID: 19235533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform.
    Liao KH; Tan YM; Conolly RB; Borghoff SJ; Gargas ML; Andersen ME; Clewell HJ
    Risk Anal; 2007 Dec; 27(6):1535-51. PubMed ID: 18093051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic toxicity at low doses: epidemiological and mode of action considerations.
    Schoen A; Beck B; Sharma R; Dubé E
    Toxicol Appl Pharmacol; 2004 Aug; 198(3):253-67. PubMed ID: 15276404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An adjustment factor for mode-of-action uncertainty with dual-mode carcinogens: the case of naphthalene-induced nasal tumors in rats.
    Bogen KT
    Risk Anal; 2008 Aug; 28(4):1033-51. PubMed ID: 18564993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of recent advances in research on arsenic cancer risk assessment.
    Gentry PR; Clewell HJ; Greene TB; Franzen AC; Yager JW
    Regul Toxicol Pharmacol; 2014 Jun; 69(1):91-104. PubMed ID: 24534001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research strategy for developing key information on bromate's mode of action.
    Bull RJ; Cottruvo JA
    Toxicology; 2006 Apr; 221(2-3):135-44. PubMed ID: 16298034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of the mode of action framework for mutagenic carcinogens case study: Cyclophosphamide.
    McCarroll N; Keshava N; Cimino M; Chu M; Dearfield K; Keshava C; Kligerman A; Owen R; Protzel A; Putzrath R; Schoeny R
    Environ Mol Mutagen; 2008 Mar; 49(2):117-31. PubMed ID: 18240158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of in vivo mutation data can inform cancer risk assessment.
    Moore MM; Heflich RH; Haber LT; Allen BC; Shipp AM; Kodell RL
    Regul Toxicol Pharmacol; 2008 Jul; 51(2):151-61. PubMed ID: 18321622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.