BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 20035570)

  • 1. Arsenic-induced carcinogenesis--oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment.
    Kitchin KT; Conolly R
    Chem Res Toxicol; 2010 Feb; 23(2):327-35. PubMed ID: 20035570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research toward the development of a biologically based dose response assessment for inorganic arsenic carcinogenicity: a progress report.
    Clewell HJ; Thomas RS; Gentry PR; Crump KS; Kenyon EM; El-Masri HA; Yager JW
    Toxicol Appl Pharmacol; 2007 Aug; 222(3):388-98. PubMed ID: 17499324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites.
    Kitchin KT
    Toxicol Appl Pharmacol; 2001 May; 172(3):249-61. PubMed ID: 11312654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic, mode of action at biologically plausible low doses: what are the implications for low dose cancer risk?
    Snow ET; Sykora P; Durham TR; Klein CB
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):557-64. PubMed ID: 15996700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroform mode of action: implications for cancer risk assessment.
    Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer risk assessment for 1,3-butadiene: data integration opportunities.
    Preston RJ
    Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk assessment of arsenic-induced internal cancer at long-term low dose exposure.
    Liao CM; Shen HH; Chen CL; Hsu LI; Lin TL; Chen SC; Chen CJ
    J Hazard Mater; 2009 Jun; 165(1-3):652-63. PubMed ID: 19062162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a quantitative model incorporating key events in a hepatotoxic mode of action to predict tumor incidence.
    Luke NS; Sams R; DeVito MJ; Conolly RB; El-Masri HA
    Toxicol Sci; 2010 May; 115(1):253-66. PubMed ID: 20106946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic-induced bladder cancer in an animal model.
    Cohen SM; Ohnishi T; Arnold LL; Le XC
    Toxicol Appl Pharmacol; 2007 Aug; 222(3):258-63. PubMed ID: 17109909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research approaches to address uncertainties in the risk assessment of arsenic in drinking water.
    Hughes MF; Kenyon EM; Kitchin KT
    Toxicol Appl Pharmacol; 2007 Aug; 222(3):399-404. PubMed ID: 17379267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic carcinogenesis in the skin.
    Yu HS; Liao WT; Chai CY
    J Biomed Sci; 2006 Sep; 13(5):657-66. PubMed ID: 16807664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How can biologically-based modeling of arsenic kinetics and dynamics inform the risk assessment process? - A workshop review.
    Kenyon EM; Klimecki WT; El-Masri H; Conolly RB; Clewell HJ; Beck BD
    Toxicol Appl Pharmacol; 2008 Nov; 232(3):359-68. PubMed ID: 18687352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oral exposure to inorganic arsenic: evaluation of its carcinogenic and non-carcinogenic effects.
    Schuhmacher-Wolz U; Dieter HH; Klein D; Schneider K
    Crit Rev Toxicol; 2009; 39(4):271-98. PubMed ID: 19235533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform.
    Liao KH; Tan YM; Conolly RB; Borghoff SJ; Gargas ML; Andersen ME; Clewell HJ
    Risk Anal; 2007 Dec; 27(6):1535-51. PubMed ID: 18093051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic toxicity at low doses: epidemiological and mode of action considerations.
    Schoen A; Beck B; Sharma R; Dubé E
    Toxicol Appl Pharmacol; 2004 Aug; 198(3):253-67. PubMed ID: 15276404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An adjustment factor for mode-of-action uncertainty with dual-mode carcinogens: the case of naphthalene-induced nasal tumors in rats.
    Bogen KT
    Risk Anal; 2008 Aug; 28(4):1033-51. PubMed ID: 18564993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of recent advances in research on arsenic cancer risk assessment.
    Gentry PR; Clewell HJ; Greene TB; Franzen AC; Yager JW
    Regul Toxicol Pharmacol; 2014 Jun; 69(1):91-104. PubMed ID: 24534001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research strategy for developing key information on bromate's mode of action.
    Bull RJ; Cottruvo JA
    Toxicology; 2006 Apr; 221(2-3):135-44. PubMed ID: 16298034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of the mode of action framework for mutagenic carcinogens case study: Cyclophosphamide.
    McCarroll N; Keshava N; Cimino M; Chu M; Dearfield K; Keshava C; Kligerman A; Owen R; Protzel A; Putzrath R; Schoeny R
    Environ Mol Mutagen; 2008 Mar; 49(2):117-31. PubMed ID: 18240158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of in vivo mutation data can inform cancer risk assessment.
    Moore MM; Heflich RH; Haber LT; Allen BC; Shipp AM; Kodell RL
    Regul Toxicol Pharmacol; 2008 Jul; 51(2):151-61. PubMed ID: 18321622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.