These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A transient asymmetric distribution of XNOA 36 mRNA and the associated spectrin network bisects Xenopus laevis stage I oocytes along the future A/V axis. Vaccaro MC; Gigliotti S; Graziani F; Carotenuto R; De Angelis C; Tussellino M; Campanella C Eur J Cell Biol; 2010 Jul; 89(7):525-36. PubMed ID: 20226562 [TBL] [Abstract][Full Text] [Related]
3. Lorentzian amplitude and phase pulse shaping for nonresonant background suppression and enhanced spectral resolution in coherent anti-Stokes Raman scattering spectroscopy and microscopy. Konorov SO; Blades MW; Turner RF Appl Spectrosc; 2010 Jul; 64(7):767-74. PubMed ID: 20615290 [TBL] [Abstract][Full Text] [Related]
4. Asymmetric distribution of metals in the Xenopus laevis oocyte: a synchrotron X-ray fluorescence microprobe study. Popescu BF; Belak ZR; Ignatyev K; Ovsenek N; Nichol H Biochem Cell Biol; 2007 Oct; 85(5):537-42. PubMed ID: 17901895 [TBL] [Abstract][Full Text] [Related]
6. Observing Xenopus laevis oocyte plasma membrane by Atomic Force Microscopy. Orsini F; Santacroce M; Arosio P; Sacchi VF Methods; 2010 May; 51(1):106-13. PubMed ID: 19995606 [TBL] [Abstract][Full Text] [Related]
7. Stress characterization of Si by near-field Raman microscope using resonant scattering. Yoshikawa M; Murakami M Appl Spectrosc; 2006 May; 60(5):479-82. PubMed ID: 16756697 [TBL] [Abstract][Full Text] [Related]
8. Cellular distribution of Mr 25,000 protein, a protein partially overlapping phosvitin and lipovitellin 2 in vitellogenin B1, and yolk proteins in Xenopus laevis oocytes and embryos. Nakamura H; Yoshitome S; Sugimoto I; Sado Y; Kawahara A; Ueno S; Miyahara T; Yoshida Y; Aoki-Yagi N; Hashimoto E Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):621-8. PubMed ID: 17804270 [TBL] [Abstract][Full Text] [Related]
9. Gamma-tubulin is asymmetrically distributed in the cortex of Xenopus oocytes. Gard DL Dev Biol; 1994 Jan; 161(1):131-40. PubMed ID: 7507446 [TBL] [Abstract][Full Text] [Related]
10. Resonance Raman spectroscopy of carotenoids in Photosystem I particles. Andreeva A; Velitchkova M Biophys Chem; 2005 Apr; 114(2-3):129-35. PubMed ID: 15829346 [TBL] [Abstract][Full Text] [Related]
11. Small-signal analysis of bidirectional operating characteristics in a Raman ring laser with external optical injections. Luo Z; Yuan X; Ye W; Zeng C; Ji J Opt Express; 2010 Aug; 18(18):19407-12. PubMed ID: 20940836 [TBL] [Abstract][Full Text] [Related]
12. Microinjection of Xenopus laevis oocytes as a system for studying nuclear transport of viruses. Au S; Cohen S; Panté N Methods; 2010 May; 51(1):114-20. PubMed ID: 20138149 [TBL] [Abstract][Full Text] [Related]
13. Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Matousek P; Morris MD; Everall N; Clark IP; Towrie M; Draper E; Goodship A; Parker AW Appl Spectrosc; 2005 Dec; 59(12):1485-92. PubMed ID: 16390587 [TBL] [Abstract][Full Text] [Related]
14. Measuring CPEB-mediated cytoplasmic polyadenylation-deadenylation in Xenopus laevis oocytes and egg extracts. Kim JH; Richter JD Methods Enzymol; 2008; 448():119-38. PubMed ID: 19111174 [TBL] [Abstract][Full Text] [Related]
15. Raman microscopy based on doubly-resonant four-wave mixing (DR-FWM). Weeks T; Wachsmann-Hogiu S; Huser T Opt Express; 2009 Sep; 17(19):17044-51. PubMed ID: 19770922 [TBL] [Abstract][Full Text] [Related]
16. Monitoring the formation and decay of transient photosensitized intermediates using pump-probe UV resonance Raman spectroscopy. II: Kinetic modeling and multidimensional least-squares analysis. Kleimeyer JA; Harris JM Appl Spectrosc; 2003 Apr; 57(4):448-53. PubMed ID: 14658642 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. Hänsel R; Foldynová-Trantírková S; Löhr F; Buck J; Bongartz E; Bamberg E; Schwalbe H; Dötsch V; Trantírek L J Am Chem Soc; 2009 Nov; 131(43):15761-8. PubMed ID: 19824671 [TBL] [Abstract][Full Text] [Related]
19. Nucleoskeleton and nucleo-cytoplasmic transport in oocytes and early development of Xenopus laevis. Rudt F; Firmbach-Kraft I; Petersen M; Pieler T; Stick R Int J Dev Biol; 1996 Feb; 40(1):273-8. PubMed ID: 8735938 [TBL] [Abstract][Full Text] [Related]
20. Monitoring the formation and decay of transient photosensitized intermediates using pump-probe UV resonance Raman spectroscopy. I: Self-modeling curve resolution. Kleimeyer JA; Harris JM Appl Spectrosc; 2003 Apr; 57(4):439-47. PubMed ID: 14658641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]