These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20035997)

  • 1. The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks.
    Thalhammer A; Edgington RJ; Cingolani LA; Schoepfer R; Jackman RB
    Biomaterials; 2010 Mar; 31(8):2097-104. PubMed ID: 20035997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ordered growth of neurons on diamond.
    Specht CG; Williams OA; Jackman RB; Schoepfer R
    Biomaterials; 2004 Aug; 25(18):4073-8. PubMed ID: 15046898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth.
    Edgington RJ; Thalhammer A; Welch JO; Bongrain A; Bergonzo P; Scorsone E; Jackman RB; Schoepfer R
    J Neural Eng; 2013 Oct; 10(5):056022. PubMed ID: 24045617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthopedic nano diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation.
    Yang L; Sheldon BW; Webster TJ
    J Biomed Mater Res A; 2009 Nov; 91(2):548-56. PubMed ID: 18985788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic plasticity in micropatterned neuronal networks.
    Vogt AK; Wrobel G; Meyer W; Knoll W; Offenhäusser A
    Biomaterials; 2005 May; 26(15):2549-57. PubMed ID: 15585257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurogenesis and neuronal communication on micropatterned neurochips.
    Bani-Yaghoub M; Tremblay R; Voicu R; Mealing G; Monette R; Py C; Faid K; Sikorska M
    Biotechnol Bioeng; 2005 Nov; 92(3):336-45. PubMed ID: 16094670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micropatterned substrates for the growth of functional neuronal networks of defined geometry.
    Vogt AK; Lauer L; Knoll W; Offenhäusser A
    Biotechnol Prog; 2003; 19(5):1562-8. PubMed ID: 14524720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts.
    Kalbacova M; Rezek B; Baresova V; Wolf-Brandstetter C; Kromka A
    Acta Biomater; 2009 Oct; 5(8):3076-85. PubMed ID: 19433140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces.
    Lechleitner T; Klauser F; Seppi T; Lechner J; Jennings P; Perco P; Mayer B; Steinmüller-Nethl D; Preiner J; Hinterdorfer P; Hermann M; Bertel E; Pfaller K; Pfaller W
    Biomaterials; 2008 Nov; 29(32):4275-84. PubMed ID: 18701160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblast interaction with DLC-coated Si substrates.
    Chai F; Mathis N; Blanchemain N; Meunier C; Hildebrand HF
    Acta Biomater; 2008 Sep; 4(5):1369-81. PubMed ID: 18495562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures.
    Nam Y; Chang JC; Wheeler BC; Brewer GJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):158-65. PubMed ID: 14723505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications.
    Bajaj P; Akin D; Gupta A; Sherman D; Shi B; Auciello O; Bashir R
    Biomed Microdevices; 2007 Dec; 9(6):787-94. PubMed ID: 17530409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitating the culture of mammalian nerve cells with polyelectrolyte multilayers.
    Forry SP; Reyes DR; Gaitan M; Locascio LE
    Langmuir; 2006 Jun; 22(13):5770-5. PubMed ID: 16768507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of nanoscale surface roughness on neural cell attachment on silicon.
    Khan SP; Auner GG; Newaz GM
    Nanomedicine; 2005 Jun; 1(2):125-9. PubMed ID: 17292068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positioning and guidance of neurons on gold surfaces by directed assembly of proteins using Atomic Force Microscopy.
    Staii C; Viesselmann C; Ballweg J; Shi L; Liu GY; Williams JC; Dent EW; Coppersmith SN; Eriksson MA
    Biomaterials; 2009 Jul; 30(20):3397-404. PubMed ID: 19342092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers.
    Cullen DK; R Patel A; Doorish JF; Smith DH; Pfister BJ
    J Neural Eng; 2008 Dec; 5(4):374-84. PubMed ID: 18827311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined topographical and chemical micropatterns for templating neuronal networks.
    Zhang J; Venkataramani S; Xu H; Song YK; Song HK; Palmore GT; Fallon J; Nurmikko AV
    Biomaterials; 2006 Nov; 27(33):5734-9. PubMed ID: 16905186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization.
    Azemi E; Stauffer WR; Gostock MS; Lagenaur CF; Cui XT
    Acta Biomater; 2008 Sep; 4(5):1208-17. PubMed ID: 18420473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact self-wiring in cultured neural networks.
    Sorkin R; Gabay T; Blinder P; Baranes D; Ben-Jacob E; Hanein Y
    J Neural Eng; 2006 Jun; 3(2):95-101. PubMed ID: 16705265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an artificial neuronal network with post-mitotic rat fetal hippocampal cells by polyethylenimine.
    Liu B; Ma J; Gao E; He Y; Cui F; Xu Q
    Biosens Bioelectron; 2008 Mar; 23(8):1221-8. PubMed ID: 18191562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.