These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A Medicago truncatula homoglutathione synthetase is derived from glutathione synthetase by gene duplication. Frendo P; Jiménez MJ; Mathieu C; Duret L; Gallesi D; Van de Sype G; Hérouart D; Puppo A Plant Physiol; 2001 Aug; 126(4):1706-15. PubMed ID: 11500568 [TBL] [Abstract][Full Text] [Related]
4. Glutathione and homoglutathione synthetases of legume nodules. Cloning, expression, and subcellular localization. Moran JF; Iturbe-Ormaetxe I; Matamoros MA; Rubio MC; Clemente MR; Brewin NJ; Becana M Plant Physiol; 2000 Nov; 124(3):1381-92. PubMed ID: 11080313 [TBL] [Abstract][Full Text] [Related]
5. The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa (Medicago sativa L.). Pasternak T; Asard H; Potters G; Jansen MA Plant Physiol Biochem; 2014 Jan; 74():16-23. PubMed ID: 24246670 [TBL] [Abstract][Full Text] [Related]
6. Molecular analysis of the pathway for the synthesis of thiol tripeptides in the model legume Lotus japonicus. Matamoros MA; Clemente MR; Sato S; Asamizu E; Tabata S; Ramos J; Moran JF; Stiller J; Gresshoff PM; Becana M Mol Plant Microbe Interact; 2003 Nov; 16(11):1039-46. PubMed ID: 14601672 [TBL] [Abstract][Full Text] [Related]
7. Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Contour-Ansel D; Torres-Franklin ML; Cruz DE Carvalho MH; D'Arcy-Lameta A; Zuily-Fodil Y Ann Bot; 2006 Dec; 98(6):1279-87. PubMed ID: 17008354 [TBL] [Abstract][Full Text] [Related]
8. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones. Clemente MR; Bustos-Sanmamed P; Loscos J; James EK; Pérez-Rontomé C; Navascués J; Gay M; Becana M J Exp Bot; 2012 Jun; 63(10):3923-34. PubMed ID: 22442424 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. D'Arcy-Lameta A; Ferrari-Iliou R; Contour-Ansel D; Pham-Thi AT; Zuily-Fodil Y Ann Bot; 2006 Jan; 97(1):133-40. PubMed ID: 16311273 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for evolution of product diversity in soybean glutathione biosynthesis. Galant A; Arkus KA; Zubieta C; Cahoon RE; Jez JM Plant Cell; 2009 Nov; 21(11):3450-8. PubMed ID: 19948790 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. Torres-Franklin ML; Contour-Ansel D; Zuily-Fodil Y; Pham-Thi AT J Plant Physiol; 2008; 165(5):514-21. PubMed ID: 17707549 [TBL] [Abstract][Full Text] [Related]
12. cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial gamma-glutamylcysteine synthetase isoform. Schäfer HJ; Haag-Kerwer A; Rausch T Plant Mol Biol; 1998 May; 37(1):87-97. PubMed ID: 9620267 [TBL] [Abstract][Full Text] [Related]
13. Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Frendo P; Harrison J; Norman C; Hernández Jiménez MJ; Van de Sype G; Gilabert A; Puppo A Mol Plant Microbe Interact; 2005 Mar; 18(3):254-9. PubMed ID: 15782639 [TBL] [Abstract][Full Text] [Related]
14. A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. Diop NN; Kidric M; Repellin A; Gareil M; d'Arcy-Lameta A; Pham Thi AT; Zuily-Fodil Y FEBS Lett; 2004 Nov; 577(3):545-50. PubMed ID: 15556644 [TBL] [Abstract][Full Text] [Related]
15. Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Innocenti G; Pucciariello C; Le Gleuher M; Hopkins J; de Stefano M; Delledonne M; Puppo A; Baudouin E; Frendo P Planta; 2007 May; 225(6):1597-602. PubMed ID: 17195940 [TBL] [Abstract][Full Text] [Related]
16. Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling. Gómez LD; Vanacker H; Buchner P; Noctor G; Foyer CH Plant Physiol; 2004 Apr; 134(4):1662-71. PubMed ID: 15047902 [TBL] [Abstract][Full Text] [Related]
17. Site directed mutagenesis of Schizosaccharomyces pombe glutathione synthetase produces an enzyme with homoglutathione synthetase activity. Dworeck T; Zimmermann M PLoS One; 2012; 7(10):e46580. PubMed ID: 23091597 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. El Maarouf H; Zuily-Fodil Y; Gareil M; d'Arcy-Lameta A; Pham-Thi AT Plant Mol Biol; 1999 Apr; 39(6):1257-65. PubMed ID: 10380811 [TBL] [Abstract][Full Text] [Related]
19. Sequence of a putative glutathione synthetase II gene and flanking regions from Anaplasma centrale. Peters JM; Dalrymple BP; Jorgensen WK Biochem Biophys Res Commun; 1992 Feb; 182(3):1040-6. PubMed ID: 1540152 [TBL] [Abstract][Full Text] [Related]
20. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Iuchi S; Kobayashi M; Yamaguchi-Shinozaki K; Shinozaki K Plant Physiol; 2000 Jun; 123(2):553-62. PubMed ID: 10859185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]