These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Statistical study of effective anisotropy field in ordered ferromagnetic nanowire arrays. Zhao S; Clime L; Chan K; Normandin F; Roberge H; Yelon A; Cochrane RW; Veres T J Nanosci Nanotechnol; 2007 Jan; 7(1):381-6. PubMed ID: 17455508 [TBL] [Abstract][Full Text] [Related]
43. Fine structure and development of dorsal root ganglion neurons and Schwann cells in the newborn opossum Monodelphis domestica. Fernández J; Nicholls JG J Comp Neurol; 1998 Jul; 396(3):338-50. PubMed ID: 9624588 [TBL] [Abstract][Full Text] [Related]
46. Self-assembly of sensory neurons into ganglia-like microtissues. Kelm JM; Ittner LM; Born W; Djonov V; Fussenegger M J Biotechnol; 2006 Jan; 121(1):86-101. PubMed ID: 16144726 [TBL] [Abstract][Full Text] [Related]
47. Regeneration of primary sensory axons into the adult rat spinal cord via a peripheral nerve graft bridging the lumbar dorsal roots to the dorsal column. Dam-Hieu P; Liu S; Choudhri T; Said G; Tadié M J Neurosci Res; 2002 May; 68(3):293-304. PubMed ID: 12111859 [TBL] [Abstract][Full Text] [Related]
52. Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering. Yu TT; Shoichet MS Biomaterials; 2005 May; 26(13):1507-14. PubMed ID: 15522752 [TBL] [Abstract][Full Text] [Related]
53. Determination of the intracellular Ca2+ concentration in the N1E-115 neuronal cell line in perspective of its use for peripheric nerve regeneration. Rodrigues JM; Luís AL; Lobato JV; Pinto MV; Lopes MA; Freitas M; Geuna S; Santos JD; Maurício AC Biomed Mater Eng; 2005; 15(6):455-65. PubMed ID: 16308461 [TBL] [Abstract][Full Text] [Related]
54. Peripherally-derived olfactory ensheathing cells do not promote primary afferent regeneration following dorsal root injury. Ramer LM; Richter MW; Roskams AJ; Tetzlaff W; Ramer MS Glia; 2004 Aug; 47(2):189-206. PubMed ID: 15185397 [TBL] [Abstract][Full Text] [Related]
55. Magnetic moment degradation of nanowires in biological media: real-time monitoring with SQUID magnetometry. Raphael MP; Christodoulides JA; Qadri SN; Simpkins BS; Byers JM Nanotechnology; 2010 Jul; 21(28):285101. PubMed ID: 20562492 [TBL] [Abstract][Full Text] [Related]
56. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method. Li S; Zhang X; Yan B; Yu T Nanotechnology; 2009 Dec; 20(49):495604. PubMed ID: 19893154 [TBL] [Abstract][Full Text] [Related]
57. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Xu S; Tian M; Wang J; Xu J; Redwing JM; Chan MH Small; 2005 Dec; 1(12):1221-9. PubMed ID: 17193423 [TBL] [Abstract][Full Text] [Related]
58. Fabrication and magnetic properties of Ni nanowire arrays with ultrahigh axial squareness. Tian F; Huang ZP; Whitmore L Phys Chem Chem Phys; 2012 Jun; 14(24):8537-41. PubMed ID: 22618120 [TBL] [Abstract][Full Text] [Related]
59. Single cell detection using a magnetic zigzag nanowire biosensor. Huang HT; Ger TR; Lin YH; Wei ZH Lab Chip; 2013 Aug; 13(15):3098-104. PubMed ID: 23752134 [TBL] [Abstract][Full Text] [Related]
60. Attenuation of protein adsorption on static and oscillating magnetostrictive nanowires. Ainslie KM; Sharma G; Dyer MA; Grimes CA; Pishko MV Nano Lett; 2005 Sep; 5(9):1852-6. PubMed ID: 16159237 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]