BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 20036248)

  • 1. Evolutionary trace annotation of protein function in the structural proteome.
    Erdin S; Ward RM; Venner E; Lichtarge O
    J Mol Biol; 2010 Mar; 396(5):1451-73. PubMed ID: 20036248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids.
    Kristensen DM; Ward RM; Lisewski AM; Erdin S; Chen BY; Fofanov VY; Kimmel M; Kavraki LE; Lichtarge O
    BMC Bioinformatics; 2008 Jan; 9():17. PubMed ID: 18190718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary Trace Annotation Server: automated enzyme function prediction in protein structures using 3D templates.
    Ward RM; Venner E; Daines B; Murray S; Erdin S; Kristensen DM; Lichtarge O
    Bioinformatics; 2009 Jun; 25(11):1426-7. PubMed ID: 19307237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De-orphaning the structural proteome through reciprocal comparison of evolutionarily important structural features.
    Ward RM; Erdin S; Tran TA; Kristensen DM; Lisewski AM; Lichtarge O
    PLoS One; 2008 May; 3(5):e2136. PubMed ID: 18461181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate protein structure annotation through competitive diffusion of enzymatic functions over a network of local evolutionary similarities.
    Venner E; Lisewski AM; Erdin S; Ward RM; Amin SR; Lichtarge O
    PLoS One; 2010 Dec; 5(12):e14286. PubMed ID: 21179190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function prediction from networks of local evolutionary similarity in protein structure.
    Erdin S; Venner E; Lisewski AM; Lichtarge O
    BMC Bioinformatics; 2013; 14 Suppl 3(Suppl 3):S6. PubMed ID: 23514548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent use of evolutionary importance for functional annotation of proteins based on local structural similarity.
    Kristensen DM; Chen BY; Fofanov VY; Ward RM; Lisewski AM; Kimmel M; Kavraki LE; Lichtarge O
    Protein Sci; 2006 Jun; 15(6):1530-6. PubMed ID: 16672239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary trace for prediction and redesign of protein functional sites.
    Wilkins A; Erdin S; Lua R; Lichtarge O
    Methods Mol Biol; 2012; 819():29-42. PubMed ID: 22183528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence and structure continuity of evolutionary importance improves protein functional site discovery and annotation.
    Wilkins AD; Lua R; Erdin S; Ward RM; Lichtarge O
    Protein Sci; 2010 Jul; 19(7):1296-311. PubMed ID: 20506260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures.
    Lua RC; Wilson SJ; Konecki DM; Wilkins AD; Venner E; Morgan DH; Lichtarge O
    Nucleic Acids Res; 2016 Jan; 44(D1):D308-12. PubMed ID: 26590254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting for epistatic interactions improves the functional analysis of protein structures.
    Wilkins AD; Venner E; Marciano DC; Erdin S; Atri B; Lua RC; Lichtarge O
    Bioinformatics; 2013 Nov; 29(21):2714-21. PubMed ID: 24021383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ETAscape: analyzing protein networks to predict enzymatic function and substrates in Cytoscape.
    Bachman BJ; Venner E; Lua RC; Erdin S; Lichtarge O
    Bioinformatics; 2012 Aug; 28(16):2186-8. PubMed ID: 22689386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ET viewer: an application for predicting and visualizing functional sites in protein structures.
    Morgan DH; Kristensen DM; Mittelman D; Lichtarge O
    Bioinformatics; 2006 Aug; 22(16):2049-50. PubMed ID: 16809388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of protein function from protein structure.
    Pal D; Eisenberg D
    Structure; 2005 Jan; 13(1):121-30. PubMed ID: 15642267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics.
    von Grotthuss M; Plewczynski D; Ginalski K; Rychlewski L; Shakhnovich EI
    BMC Bioinformatics; 2006 Feb; 7():53. PubMed ID: 16460560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling.
    Engelen S; Trojan LA; Sacquin-Mora S; Lavery R; Carbone A
    PLoS Comput Biol; 2009 Jan; 5(1):e1000267. PubMed ID: 19165315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evolutionary trace method defines binding surfaces common to protein families.
    Lichtarge O; Bourne HR; Cohen FE
    J Mol Biol; 1996 Mar; 257(2):342-58. PubMed ID: 8609628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coverage of whole proteome by structural genomics observed through protein homology modeling database.
    Yura K; Yamaguchi A; Go M
    J Struct Funct Genomics; 2006 Jun; 7(2):65-76. PubMed ID: 17146617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information.
    Zhang C; Freddolino PL; Zhang Y
    Nucleic Acids Res; 2017 Jul; 45(W1):W291-W299. PubMed ID: 28472402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.