BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 20036248)

  • 21. Coverage of whole proteome by structural genomics observed through protein homology modeling database.
    Yura K; Yamaguchi A; Go M
    J Struct Funct Genomics; 2006 Jun; 7(2):65-76. PubMed ID: 17146617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coverage of protein sequence space by current structural genomics targets.
    O'Toole N; Raymond S; Cygler M
    J Struct Funct Genomics; 2003; 4(2-3):47-55. PubMed ID: 14649288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. INTREPID--INformation-theoretic TREe traversal for Protein functional site IDentification.
    Sankararaman S; Sjölander K
    Bioinformatics; 2008 Nov; 24(21):2445-52. PubMed ID: 18776193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural clusters of evolutionary trace residues are statistically significant and common in proteins.
    Madabushi S; Yao H; Marsh M; Kristensen DM; Philippi A; Sowa ME; Lichtarge O
    J Mol Biol; 2002 Feb; 316(1):139-54. PubMed ID: 11829509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre.
    Bennett-Lovsey RM; Herbert AD; Sternberg MJ; Kelley LA
    Proteins; 2008 Feb; 70(3):611-25. PubMed ID: 17876813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective function annotation through catalytic residue conservation.
    George RA; Spriggs RV; Bartlett GJ; Gutteridge A; MacArthur MW; Porter CT; Al-Lazikani B; Thornton JM; Swindells MB
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12299-304. PubMed ID: 16037208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GoFDR: A sequence alignment based method for predicting protein functions.
    Gong Q; Ning W; Tian W
    Methods; 2016 Jan; 93():3-14. PubMed ID: 26277418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disentangling evolutionary signals: conservation, specificity determining positions and coevolution. Implication for catalytic residue prediction.
    Teppa E; Wilkins AD; Nielsen M; Buslje CM
    BMC Bioinformatics; 2012 Sep; 13():235. PubMed ID: 22978315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced genome annotation using structural profiles in the program 3D-PSSM.
    Kelley LA; MacCallum RM; Sternberg MJ
    J Mol Biol; 2000 Jun; 299(2):499-520. PubMed ID: 10860755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):541-57. PubMed ID: 11955008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):523-40. PubMed ID: 11955007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-scale assessment of the utility of low-resolution protein structures for biochemical function assignment.
    Arakaki AK; Zhang Y; Skolnick J
    Bioinformatics; 2004 May; 20(7):1087-96. PubMed ID: 14764543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The AnnoLite and AnnoLyze programs for comparative annotation of protein structures.
    Marti-Renom MA; Rossi A; Al-Shahrour F; Davis FP; Pieper U; Dopazo J; Sali A
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S4. PubMed ID: 17570147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene3D: modelling protein structure, function and evolution.
    Yeats C; Maibaum M; Marsden R; Dibley M; Lee D; Addou S; Orengo CA
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D281-4. PubMed ID: 16381865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and Protein Interaction-Based Gene Ontology Annotations Reveal Likely Functions of Uncharacterized Proteins on Human Chromosome 17.
    Zhang C; Wei X; Omenn GS; Zhang Y
    J Proteome Res; 2018 Dec; 17(12):4186-4196. PubMed ID: 30265558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies.
    Tung CH; Yang JM
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W438-43. PubMed ID: 17485476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking.
    Aloy P; Querol E; Aviles FX; Sternberg MJ
    J Mol Biol; 2001 Aug; 311(2):395-408. PubMed ID: 11478868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D-GENOMICS: a database to compare structural and functional annotations of proteins between sequenced genomes.
    Fleming K; Müller A; MacCallum RM; Sternberg MJ
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D245-50. PubMed ID: 14681404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Common Structural Core of Three-Dozen Residues Reveals Intersuperfamily Relationships.
    Mönttinen HA; Ravantti JJ; Poranen MM
    Mol Biol Evol; 2016 Jul; 33(7):1697-710. PubMed ID: 26931141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An accurate, sensitive, and scalable method to identify functional sites in protein structures.
    Yao H; Kristensen DM; Mihalek I; Sowa ME; Shaw C; Kimmel M; Kavraki L; Lichtarge O
    J Mol Biol; 2003 Feb; 326(1):255-61. PubMed ID: 12547207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.