These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20036310)

  • 1. Hard and soft micro- and nanofabrication: An integrated approach to hydrogel-based biosensing and drug delivery.
    Siegel RA; Gu Y; Lei M; Baldi A; Nuxoll EE; Ziaie B
    J Control Release; 2010 Feb; 141(3):303-13. PubMed ID: 20036310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top-down and bottom-up fabrication techniques for hydrogel based sensing and hormone delivery microdevices.
    Siegel RA; Nuxoll EE; Hillmyer MA; Ziaie B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():232-5. PubMed ID: 19963454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenylboronic Acid Appended Pyrene-Based Low-Molecular-Weight Injectable Hydrogel: Glucose-Stimulated Insulin Release.
    Mandal D; Mandal SK; Ghosh M; Das PK
    Chemistry; 2015 Aug; 21(34):12042-52. PubMed ID: 26184777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow control with hydrogels.
    Eddington DT; Beebe DJ
    Adv Drug Deliv Rev; 2004 Feb; 56(2):199-210. PubMed ID: 14741116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery.
    Ziaie B; Baldi A; Lei M; Gu Y; Siegel RA
    Adv Drug Deliv Rev; 2004 Feb; 56(2):145-72. PubMed ID: 14741113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform.
    Tierney S; Volden S; Stokke BT
    Biosens Bioelectron; 2009 Mar; 24(7):2034-9. PubMed ID: 19062267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-smart hydrogels: co-joined molecular recognition and signal transduction in biosensor fabrication and drug delivery.
    Brahim S; Narinesingh D; Guiseppi-Elie A
    Biosens Bioelectron; 2002 Dec; 17(11-12):973-81. PubMed ID: 12392946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery.
    Bonanno LM; Segal E
    Nanomedicine (Lond); 2011 Dec; 6(10):1755-70. PubMed ID: 22122584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfabricated microporous membranes reduce the host immune response and prolong the functional lifetime of a closed-loop insulin delivery implant in a type 1 diabetic rat model.
    Li J; Chu MK; Gordijo CR; Abbasi AZ; Chen K; Adissu HA; Löhn M; Giacca A; Plettenburg O; Wu XY
    Biomaterials; 2015 Apr; 47():51-61. PubMed ID: 25682160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups.
    Ye G; Wang X
    Biosens Bioelectron; 2010 Oct; 26(2):772-7. PubMed ID: 20637587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices.
    Betancourt T; Brannon-Peppas L
    Int J Nanomedicine; 2006; 1(4):483-95. PubMed ID: 17722281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymeric hydrogels for oral insulin delivery.
    Chaturvedi K; Ganguly K; Nadagouda MN; Aminabhavi TM
    J Control Release; 2013 Jan; 165(2):129-38. PubMed ID: 23159827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of hydrogels with hard and soft microstructures.
    Lei M; Ziaie B; Nuxoll E; Iván K; Noszticzius Z; Siegel RA
    J Nanosci Nanotechnol; 2007 Mar; 7(3):780-9. PubMed ID: 17450833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA Hydrogels and Microgels for Biosensing and Biomedical Applications.
    Li F; Lyu D; Liu S; Guo W
    Adv Mater; 2020 Jan; 32(3):e1806538. PubMed ID: 31379017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan reinforced hydrogels with swelling-shrinking behaviors in response to glucose concentration.
    Elshaarani T; Yu H; Wang L; Feng J; Li C; Zhou W; Khan A; Usman M; Amin BU; Khan R
    Int J Biol Macromol; 2020 Oct; 161():109-121. PubMed ID: 32512091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-responsive hydrogels based on dynamic covalent chemistry and inclusion complexation.
    Yang T; Ji R; Deng XX; Du FS; Li ZC
    Soft Matter; 2014 Apr; 10(15):2671-8. PubMed ID: 24647364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery.
    Mo R; Jiang T; Di J; Tai W; Gu Z
    Chem Soc Rev; 2014 May; 43(10):3595-629. PubMed ID: 24626293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeability control of glucose-sensitive nanoshells.
    Zhang Y; Guan Y; Zhou S
    Biomacromolecules; 2007 Dec; 8(12):3842-7. PubMed ID: 18020392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Phenylboronic Acid-Based Gels with Potential for Self-Regulated Drug Delivery.
    Wang C; Lin B; Zhu H; Bi F; Xiao S; Wang L; Gai G; Zhao L
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30893913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of glucose levels using a functionalized hydrogel-optical fiber biosensor: toward continuous monitoring of blood glucose in vivo.
    Tierney S; Falch BM; Hjelme DR; Stokke BT
    Anal Chem; 2009 May; 81(9):3630-6. PubMed ID: 19323502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.