These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 20036809)

  • 41. Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application.
    Ke Y; Zhang XY; Ramakrishna S; He LM; Wu G
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1107-1119. PubMed ID: 27772711
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrospinning of polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and properties.
    Volova T; Goncharov D; Sukovatyi A; Shabanov A; Nikolaeva E; Shishatskaya E
    J Biomater Sci Polym Ed; 2014; 25(4):370-93. PubMed ID: 24295429
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polyhydroxyalkanoates: Next generation natural biomolecules and a solution for the world's future economy.
    Shahid S; Razzaq S; Farooq R; Nazli ZI
    Int J Biol Macromol; 2021 Jan; 166():297-321. PubMed ID: 33127548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications.
    Luo Z; Wu YL; Li Z; Loh XJ
    Biotechnol J; 2019 Dec; 14(12):e1900283. PubMed ID: 31469496
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemical modification of functionalized polyhydroxyalkanoates via "Click" chemistry: A proof of concept.
    Nkrumah-Agyeefi S; Scholz C
    Int J Biol Macromol; 2017 Feb; 95():796-808. PubMed ID: 27919815
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystallization behaviours of bacterially synthesized poly(hydroxyalkanoate)s in the presence of oxalamide compounds with different configurations.
    Xu P; Feng Y; Ma P; Chen Y; Dong W; Chen M
    Int J Biol Macromol; 2017 Nov; 104(Pt A):624-630. PubMed ID: 28583870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacterial polyhydroxyalkanoates.
    Lee SY
    Biotechnol Bioeng; 1996 Jan; 49(1):1-14. PubMed ID: 18623547
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates.
    Sathiyanarayanan G; Saibaba G; Kiran GS; Yang YH; Selvin J
    Crit Rev Microbiol; 2017 May; 43(3):294-312. PubMed ID: 27824282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture.
    Tarrahi R; Fathi Z; Seydibeyoğlu MÖ; Doustkhah E; Khataee A
    Int J Biol Macromol; 2020 Mar; 146():596-619. PubMed ID: 31899240
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advances in cyanobacterial polyhydroxyalkanoates production.
    Singh AK; Mallick N
    FEMS Microbiol Lett; 2017 Nov; 364(20):. PubMed ID: 28961962
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The oil-absorbing property of polyhydroxyalkanoate films and its practical application: a refreshing new outlook for an old degrading material.
    Sudesh K; Loo CY; Goh LK; Iwata T; Maeda M
    Macromol Biosci; 2007 Nov; 7(11):1199-205. PubMed ID: 17703476
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds.
    Sanhueza C; Acevedo F; Rocha S; Villegas P; Seeger M; Navia R
    Int J Biol Macromol; 2019 Mar; 124():102-110. PubMed ID: 30445089
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Microbial cell factories for production of polyhydroxyalkanoates].
    Li Z; Wei X; Chen G
    Sheng Wu Gong Cheng Xue Bao; 2010 Oct; 26(10):1426-35. PubMed ID: 21218631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates.
    Kim DY; Kim HW; Chung MG; Rhee YH
    J Microbiol; 2007 Apr; 45(2):87-97. PubMed ID: 17483792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: Materials, printing techniques, and applications.
    Mehrpouya M; Vahabi H; Barletta M; Laheurte P; Langlois V
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112216. PubMed ID: 34225868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent advances in constructing artificial microbial consortia for the production of medium-chain-length polyhydroxyalkanoates.
    Ai M; Zhu Y; Jia X
    World J Microbiol Biotechnol; 2021 Jan; 37(1):2. PubMed ID: 33392870
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbonylative Polymerization of Epoxides Mediated by Tri-metallic Complexes: A Dual Catalysis Strategy for Synthesis of Biodegradable Polyhydroxyalkanoates.
    Yang JC; Yang J; Li WB; Lu XB; Liu Y
    Angew Chem Int Ed Engl; 2022 Feb; 61(9):e202116208. PubMed ID: 34964224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects.
    Braunegg G; Lefebvre G; Genser KF
    J Biotechnol; 1998 Oct; 65(2-3):127-61. PubMed ID: 9828458
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Water soluble polyhydroxyalkanoates: future materials for therapeutic applications.
    Li Z; Loh XJ
    Chem Soc Rev; 2015 May; 44(10):2865-79. PubMed ID: 25788317
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biosynthesis and characterization of polyhydroxyalkanoates by Pseudomonas guezennei from alkanoates and glucose.
    Simon-Colin C; Gouin C; Lemechko P; Schmitt S; Senant A; Kervarec N; Guezennec J
    Int J Biol Macromol; 2012 Dec; 51(5):1063-9. PubMed ID: 22947450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.