These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 20037591)

  • 1. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals.
    Clark JJ; Sandberg SG; Wanat MJ; Gan JO; Horne EA; Hart AS; Akers CA; Parker JG; Willuhn I; Martinez V; Evans SB; Stella N; Phillips PE
    Nat Methods; 2010 Feb; 7(2):126-9. PubMed ID: 20037591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated potentiostat for neurotransmitter sensing. A high sensitivity, wide range VLSI design and chip.
    Murari K; Stanaćević M; Cauwenberghs G; Thakor NV
    IEEE Eng Med Biol Mag; 2005; 24(6):23-9. PubMed ID: 16382801
    [No Abstract]   [Full Text] [Related]  

  • 3. Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo.
    Zachek MK; Takmakov P; Park J; Wightman RM; McCarty GS
    Biosens Bioelectron; 2010 Jan; 25(5):1179-85. PubMed ID: 19896822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless in vivo voltammetric measurements of neurotransmitters in freely behaving rats.
    Crespi F
    Biosens Bioelectron; 2010 Jul; 25(11):2425-30. PubMed ID: 20430607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A motorized microdrive for recording of neural ensembles in awake behaving rats.
    Venkateswaran R; Boldt C; Parthasarathy J; Ziaie B; Erdman AG; Redish AD
    J Biomech Eng; 2005 Nov; 127(6):1035-40. PubMed ID: 16438246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective response of dopamine in the presence of ascorbic acid on L-cysteine self-assembled gold electrode.
    Hu G; Liu Y; Zhao J; Cui S; Yang Z; Zhang Y
    Bioelectrochemistry; 2006 Oct; 69(2):254-7. PubMed ID: 16698326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous measurement of cholinergic tone and neuronal network dynamics in vivo in the rat brain using a novel choline oxidase based electrochemical biosensor.
    Santos RM; Laranjinha J; Barbosa RM; Sirota A
    Biosens Bioelectron; 2015 Jul; 69():83-94. PubMed ID: 25706061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Economic bismuth-film microsensor for anodic stripping analysis of trace heavy metals using differential pulse voltammetry.
    Legeai S; Soropogui K; Cretinon M; Vittori O; Heeren De Oliveira A; Barbier F; Grenier-Loustalot MF
    Anal Bioanal Chem; 2005 Nov; 383(5):839-47. PubMed ID: 16215756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and characterization of choline and L-glutamate biosensor integrated on silicon microprobes for in-vivo monitoring.
    Frey O; van der Wal P; de Rooij N; Koudelka-Hep M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6040-3. PubMed ID: 18003391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact microelectrode array system: tool for in situ monitoring of drug effects on neurotransmitter release from neural cells.
    Chen Y; Guo C; Lim L; Cheong S; Zhang Q; Tang K; Reboud J
    Anal Chem; 2008 Feb; 80(4):1133-40. PubMed ID: 18271508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new dynamic electrochemical transduction mechanism for interdigitated array microelectrodes.
    Zhu X; Choi JW; Ahn CH
    Lab Chip; 2004 Dec; 4(6):581-7. PubMed ID: 15570369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-fiber microelectrodes for in vivo applications.
    Huffman ML; Venton BJ
    Analyst; 2009 Jan; 134(1):18-24. PubMed ID: 19082168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional microelectrode array (mMEA) chip for neural-electrical and neural-chemical interfaces: characterization of comb interdigitated electrode towards dopamine detection.
    Chuang MC; Lai HY; Annie Ho JA; Chen YY
    Biosens Bioelectron; 2013 Mar; 41():602-7. PubMed ID: 23083904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable technology for bio-chemical analysis of body fluids during exercise.
    Morris D; Schazmann B; Wu Y; Coyle S; Brady S; Fay C; Hayes J; Lau KT; Wallace G; Diamond D
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5741-4. PubMed ID: 19164021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel micro-probe sensors for real-time measurement of ATP/Purines in the brain.
    Med Device Technol; 2005 Sep; 16(7):48. PubMed ID: 16259162
    [No Abstract]   [Full Text] [Related]  

  • 16. Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network.
    Huang Y; Sudibya HG; Fu D; Xue R; Dong X; Li LJ; Chen P
    Biosens Bioelectron; 2009 Apr; 24(8):2716-20. PubMed ID: 19135355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid.
    Thiagarajan S; Tsai TH; Chen SM
    Biosens Bioelectron; 2009 Apr; 24(8):2712-5. PubMed ID: 19162467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.
    Rodríguez MC; Rubianes MD; Rivas GA
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6003-9. PubMed ID: 19198338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New trends in the electrochemical sensing of dopamine.
    Jackowska K; Krysinski P
    Anal Bioanal Chem; 2013 Apr; 405(11):3753-71. PubMed ID: 23241816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine.
    Lin Y; Zhang Z; Zhao L; Wang X; Yu P; Su L; Mao L
    Biosens Bioelectron; 2010 Feb; 25(6):1350-5. PubMed ID: 19926273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.