These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
29. In-Vivo Validation of Fully Implantable Multi-Panel Devices for Remote Monitoring of Metabolism. Baj-Rossi C; Cavallini A; Kilinc EG; Stradolini F; Rezzonico Jost T; Proietti M; De Micheli G; Grassi F; Dehollain C; Carrara S IEEE Trans Biomed Circuits Syst; 2016 Oct; 10(5):955-962. PubMed ID: 28113177 [TBL] [Abstract][Full Text] [Related]
30. Ion-exchange voltammetry of dopamine at Nafion-coated glassy carbon electrodes: quantitative features of ion-exchange partition and reassessment on the oxidation mechanism of dopamine in the presence of excess ascorbic acid. Rocha LS; Carapuça HM Bioelectrochemistry; 2006 Oct; 69(2):258-66. PubMed ID: 16713377 [TBL] [Abstract][Full Text] [Related]
31. DNA/Poly(p-aminobenzensulfonic acid) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. Lin X; Kang G; Lu L Bioelectrochemistry; 2007 May; 70(2):235-44. PubMed ID: 17079195 [TBL] [Abstract][Full Text] [Related]
32. Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry. Ly SY Bioelectrochemistry; 2006 May; 68(2):227-31. PubMed ID: 16309972 [TBL] [Abstract][Full Text] [Related]
33. Nanopillar array structures for enhancing biosensing performance. Anandan V; Rao YL; Zhang G Int J Nanomedicine; 2006; 1(1):73-9. PubMed ID: 17722264 [TBL] [Abstract][Full Text] [Related]
34. A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode. Deng C; Chen J; Wang M; Xiao C; Nie Z; Yao S Biosens Bioelectron; 2009 Mar; 24(7):2091-4. PubMed ID: 19084392 [TBL] [Abstract][Full Text] [Related]
35. Biosensing at disk microelectrode arrays. Inter-electrode functionalisation allows formatting into miniaturised sensing platforms of enhanced sensitivity. Baldrich E; Javier del Campo F; Muñoz FX Biosens Bioelectron; 2009 Dec; 25(4):920-6. PubMed ID: 19800216 [TBL] [Abstract][Full Text] [Related]
36. 5×5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine. Lu MS; Chen YC; Huang PC Biosens Bioelectron; 2010 Nov; 26(3):1093-7. PubMed ID: 20855189 [TBL] [Abstract][Full Text] [Related]
38. Electrogenerated chemiluminescence behavior of peptide nanovesicle and its application in sensing dopamine. Huang C; Chen X; Lu Y; Yang H; Yang W Biosens Bioelectron; 2015 Jan; 63():478-482. PubMed ID: 25129510 [TBL] [Abstract][Full Text] [Related]
39. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Swamy BE; Venton BJ Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262 [TBL] [Abstract][Full Text] [Related]
40. Supramolecular-mediated immobilization of L-phenylalanine dehydrogenase on cyclodextrin-coated Au electrodes for biosensor applications. Villalonga R; Fujii A; Shinohara H; Asano Y; Cao R; Tachibana S; Ortiz P Biotechnol Lett; 2007 Mar; 29(3):447-52. PubMed ID: 17237972 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]