BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 20038038)

  • 1. [Study of biological molecules in water by using the resonance raman spectra in liquid-core optical fiber].
    Jia LH; Wang YD; Sun CL; Li ZL; Li ZW; Wang LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2686-8. PubMed ID: 20038038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman sensitivity enhancement for aqueous absorbing sample using Teflon-AF 2400 liquid core optical fibre cell.
    Tian Y; Zhang L; Zuo J; Li Z; Gao S; Lu G
    Anal Chim Acta; 2007 Jan; 581(1):154-8. PubMed ID: 17386439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced and broadened SRS spectra of toluene mixed with chloroform in liquid-core fiber.
    Dai F; Xu Y; Chen X
    Opt Express; 2009 Oct; 17(22):19882-6. PubMed ID: 19997210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy.
    Horan LE; Ruth AA; Gunning FC
    J Chem Phys; 2012 Dec; 137(22):224504. PubMed ID: 23249014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman scattering of β-carotene solution excited by visible laser beams into second singlet state.
    Lu L; Shi L; Secor J; Alfano R
    J Photochem Photobiol B; 2018 Feb; 179():18-22. PubMed ID: 29306722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive fiber enhanced UV resonance Raman sensing of drugs.
    Frosch T; Yan D; Popp J
    Anal Chem; 2013 Jul; 85(13):6264-71. PubMed ID: 23758275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of Raman signal enhancement from aqueous samples in liquid core optical fibers.
    Qi D; Berger AJ
    Appl Spectrosc; 2004 Oct; 58(10):1165-71. PubMed ID: 15527516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Visible absorption spectra and resonance Raman spectra of n-pi* singlet-triplet transition of p-benzoquinone in CS2].
    Yin JH; Li ZW; Ren CN; Zhang LY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Nov; 25(11):1821-3. PubMed ID: 16499054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman resonance effect in liquid water.
    Pastorczak M; Kozanecki M; Ulanski J
    J Phys Chem A; 2008 Oct; 112(43):10705-7. PubMed ID: 18834100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative method for determination of Co(II) based on the inner filter effect of reagents on the Raman scattering signals of water.
    Wang HY; Huang CZ
    Anal Chim Acta; 2007 Mar; 587(1):142-8. PubMed ID: 17386766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Resonance Raman Spectral Properties Studies of Beta-carotene in Solution].
    Sun MJ; Liu S; Liu TY; Xu SN; Sun CL; Zhou M; Li ZW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1904-7. PubMed ID: 26717749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative concentration measurements of creatinine dissolved in water and urine using Raman spectroscopy and a liquid core optical fiber.
    Qi D; Berger AJ
    J Biomed Opt; 2005; 10(3):031115. PubMed ID: 16229640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers.
    Yang X; Gu C; Qian F; Li Y; Zhang JZ
    Anal Chem; 2011 Aug; 83(15):5888-94. PubMed ID: 21692506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region.
    Santos LF; Wolthuis R; Koljenović S; Almeida RM; Puppels GJ
    Anal Chem; 2005 Oct; 77(20):6747-52. PubMed ID: 16223266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel micro-Raman setup with tunable laser excitation for time-efficient resonance Raman microscopy and imaging.
    Stürzl N; Lebedkin S; Klumpp S; Hennrich F; Kappes MM
    Anal Chem; 2013 May; 85(9):4554-9. PubMed ID: 23521587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmission resonance Raman spectroscopy: experimental results versus theoretical model calculations.
    Gonzálvez AG; González Ureña Á
    Appl Spectrosc; 2012 Oct; 66(10):1163-70. PubMed ID: 23031699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic and tautomeric composition of cytosine in aqueous solution: resonance and non-resonance Raman spectroscopy study.
    Burova TG; Ermolenkov VV; Ten GN; Kadrov DM; Nurlygaianova MN; Baranov VI; Lednev IK
    J Phys Chem A; 2013 Dec; 117(48):12734-48. PubMed ID: 24215239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water in the hydration shell of halide ions has significantly reduced Fermi resonance and moderately enhanced Raman cross section in the OH stretch regions.
    Ahmed M; Singh AK; Mondal JA; Sarkar SK
    J Phys Chem B; 2013 Aug; 117(33):9728-33. PubMed ID: 23895453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell.
    Pelletier MJ; Altkorn R
    Anal Chem; 2001 Mar; 73(6):1393-7. PubMed ID: 11305681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-optical switching based on inverse Raman scattering in liquid-core optical fibers.
    Kieu K; Schneebeli L; Merzlyak E; Hales JM; DeSimone A; Perry JW; Norwood RA; Peyghambarian N
    Opt Lett; 2012 Mar; 37(5):942-4. PubMed ID: 22378446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.