These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 20038140)
1. Nucleotide- and substrate-induced conformational transitions in the CBS domain-containing pyrophosphatase of Moorella thermoacetica. Jämsen J; Baykov AA; Lahti R Biochemistry; 2010 Feb; 49(5):1005-13. PubMed ID: 20038140 [TBL] [Abstract][Full Text] [Related]
2. A CBS domain-containing pyrophosphatase of Moorella thermoacetica is regulated by adenine nucleotides. Jämsen J; Tuominen H; Salminen A; Belogurov GA; Magretova NN; Baykov AA; Lahti R Biochem J; 2007 Dec; 408(3):327-33. PubMed ID: 17714078 [TBL] [Abstract][Full Text] [Related]
3. Mutational analysis of residues in the regulatory CBS domains of Moorella thermoacetica pyrophosphatase corresponding to disease-related residues of human proteins. Jämsen J; Tuominen H; Baykov AA; Lahti R Biochem J; 2011 Feb; 433(3):497-504. PubMed ID: 21067517 [TBL] [Abstract][Full Text] [Related]
4. Fast kinetics of nucleotide binding to Clostridium perfringens family II pyrophosphatase containing CBS and DRTGG domains. Jämsen J; Baykov AA; Lahti R Biochemistry (Mosc); 2012 Feb; 77(2):165-70. PubMed ID: 22348476 [TBL] [Abstract][Full Text] [Related]
5. Specific Mutations Reverse Regulatory Effects of Adenosine Phosphates and Increase Their Binding Stoichiometry in CBS Domain-Containing Pyrophosphatase. Anashkin VA; Kirillova EA; Orlov VN; Baykov AA Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891956 [TBL] [Abstract][Full Text] [Related]
6. Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria. Anashkin VA; Salminen A; Tuominen HK; Orlov VN; Lahti R; Baykov AA J Biol Chem; 2015 Nov; 290(46):27594-603. PubMed ID: 26400082 [TBL] [Abstract][Full Text] [Related]
7. Roles of nucleotide substructures in the regulation of cystathionine β-synthase domain-containing pyrophosphatase. Anashkin VA; Aksenova VA; Vorobyeva NN; Baykov AA Biochim Biophys Acta Gen Subj; 2019 Aug; 1863(8):1263-1269. PubMed ID: 31103750 [TBL] [Abstract][Full Text] [Related]
8. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching. Flowers S; Biswas EE; Biswas SB Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577 [TBL] [Abstract][Full Text] [Related]
9. Rates of elementary catalytic steps for different metal forms of the family II pyrophosphatase from Streptococcus gordonii. Zyryanov AB; Vener AV; Salminen A; Goldman A; Lahti R; Baykov AA Biochemistry; 2004 Feb; 43(4):1065-74. PubMed ID: 14744152 [TBL] [Abstract][Full Text] [Related]
10. Global conformation of the Escherichia coli replication factor DnaC protein in absence and presence of nucleotide cofactors. Galletto R; Maillard R; Jezewska MJ; Bujalowski W Biochemistry; 2004 Aug; 43(34):10988-1001. PubMed ID: 15323558 [TBL] [Abstract][Full Text] [Related]
11. Cystathionine β-synthase (CBS) domains confer multiple forms of Mg2+-dependent cooperativity to family II pyrophosphatases. Salminen A; Anashkin VA; Lahti M; Tuominen HK; Lahti R; Baykov AA J Biol Chem; 2014 Aug; 289(33):22865-22876. PubMed ID: 24986864 [TBL] [Abstract][Full Text] [Related]
12. Site-specific effects of zinc on the activity of family II pyrophosphatase. Zyryanov AB; Tammenkoski M; Salminen A; Kolomiytseva GY; Fabrichniy IP; Goldman A; Lahti R; Baykov AA Biochemistry; 2004 Nov; 43(45):14395-402. PubMed ID: 15533044 [TBL] [Abstract][Full Text] [Related]
13. The second step of ATP binding to DnaK induces peptide release. Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566 [TBL] [Abstract][Full Text] [Related]
14. Mutual effects of cationic ligands and substrate on activity of the Na+-transporting pyrophosphatase of Methanosarcina mazei. Malinen AM; Baykov AA; Lahti R Biochemistry; 2008 Dec; 47(50):13447-54. PubMed ID: 19053266 [TBL] [Abstract][Full Text] [Related]
15. Nucleotide-induced conformational transitions in the CBS domain protein MJ0729 of Methanocaldococcus jannaschii. Martínez-Cruz LA; Encinar JA; Sevilla P; Oyenarte I; Gómez-García I; Aguado-Llera D; García-Blanco F; Gómez J; Neira JL Protein Eng Des Sel; 2011 Jan; 24(1-2):161-9. PubMed ID: 20959390 [TBL] [Abstract][Full Text] [Related]
16. The nucleotide-binding site of the Escherichia coli DnaC protein: molecular topography of DnaC protein-nucleotide cofactor complexes. Galletto R; Jezewska MJ; Maillard R; Bujalowski W Cell Biochem Biophys; 2005; 43(3):331-53. PubMed ID: 16244362 [TBL] [Abstract][Full Text] [Related]
17. Kinetic mechanism of nucleotide cofactor binding to Escherichia coli replicative helicase DnaB protein. stopped-flow kinetic studies using fluorescent, ribose-, and base-modified nucleotide analogues. Bujalowski W; Jezewska MJ Biochemistry; 2000 Feb; 39(8):2106-22. PubMed ID: 10684661 [TBL] [Abstract][Full Text] [Related]
18. Altering the reaction coordinate of the ATP sulfurylase-GTPase reaction. Yang M; Leyh TS Biochemistry; 1997 Mar; 36(11):3270-7. PubMed ID: 9116005 [TBL] [Abstract][Full Text] [Related]
19. Multistep sequential mechanism of Escherichia coli helicase PriA protein-ssDNA interactions. Kinetics and energetics of the active ssDNA-searching site of the enzyme. Galletto R; Jezewska MJ; Bujalowski W Biochemistry; 2004 Aug; 43(34):11002-16. PubMed ID: 15323559 [TBL] [Abstract][Full Text] [Related]
20. Multiple-step kinetic mechanism of DNA-independent ATP binding and hydrolysis by Escherichia coli replicative helicase DnaB protein: quantitative analysis using the rapid quench-flow method. Rajendran S; Jezewska MJ; Bujalowski W J Mol Biol; 2000 Nov; 303(5):773-95. PubMed ID: 11061975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]