These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20038165)

  • 1. Dipolar driven spontaneous self assembly of superparamagnetic Co nanoparticles into micrometric rice-grain like structures.
    Varón M; Peña L; Balcells L; Skumryev V; Martinez B; Puntes V
    Langmuir; 2010 Jan; 26(1):109-16. PubMed ID: 20038165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals.
    Lalatonne Y; Richardi J; Pileni MP
    Nat Mater; 2004 Feb; 3(2):121-5. PubMed ID: 14730356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palladium nanostructures and nanoparticles from molecular precursors on highly ordered pyrolytic graphite.
    Díaz-Ayala R; Fachini ER; Raptis R; Cabrera CR
    Langmuir; 2006 Nov; 22(24):10185-95. PubMed ID: 17107020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and self-assembly of polymer-coated ferromagnetic nanoparticles.
    Keng PY; Shim I; Korth BD; Douglas JF; Pyun J
    ACS Nano; 2007 Nov; 1(4):279-92. PubMed ID: 19206678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The zero field self-organization of cobalt/surfactant nanocomposite thin films.
    Cataldo S; Pignataro B; Ruggirello A; Bongiorno C; Liveri VT
    Nanotechnology; 2009 Jun; 20(22):225605. PubMed ID: 19436090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical and morphological characterizations of CoNi alloy nanoparticles formed by co-evaporation onto highly oriented pyrolytic graphite.
    Zhang G; Sun S; Bostetter M; Poulin S; Sacher E
    J Colloid Interface Sci; 2010 Oct; 350(1):16-21. PubMed ID: 20650466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of the interaction of evaporated Pt nanoparticles with variously treated surfaces of highly oriented pyrolytic graphite.
    Yang DQ; Zhang GX; Sacher E; José-Yacaman M; Elizondo N
    J Phys Chem B; 2006 Apr; 110(16):8348-56. PubMed ID: 16623519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of colloidal silver iron oxide nanoparticles--study of their optical and magnetic behavior.
    Kumar A; Singhal A
    Nanotechnology; 2009 Jul; 20(29):295606. PubMed ID: 19567956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural diversity in binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Kotov NA; O'Brien S; Murray CB
    Nature; 2006 Jan; 439(7072):55-9. PubMed ID: 16397494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy.
    Puntes VF; Gorostiza P; Aruguete DM; Bastus NG; Alivisatos AP
    Nat Mater; 2004 Apr; 3(4):263-8. PubMed ID: 15048109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of magnetic Ni nanoparticles into 1D arrays with antiferromagnetic order.
    Bliznyuk V; Singamaneni S; Sahoo S; Polisetty S; He X; Binek Ch
    Nanotechnology; 2009 Mar; 20(10):105606. PubMed ID: 19417526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic-field-induced assemblies of cobalt nanoparticles.
    Cheng G; Romero D; Fraser GT; Hight Walker AR
    Langmuir; 2005 Dec; 21(26):12055-9. PubMed ID: 16342969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of necklace-like magnetic nanorings.
    Wang H; Chen QW; Sun YB; Wang MS; Sun LX; Yan WS
    Langmuir; 2010 Apr; 26(8):5957-62. PubMed ID: 20302284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transmission electron microscopy study of Fe-Co alloy nanoparticles in silica aerogel matrix using HREM, EDX, and EELS.
    Falqui A; Corrias A; Gass M; Mountjoy G
    Microsc Microanal; 2009 Apr; 15(2):114-24. PubMed ID: 19284893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homo- and heteroassemblies of lactim/lactam recognition patterns on highly ordered pyrolytic graphite: An STM investigation.
    Mourran A; Ziener U; Möller M; Suarez M; Lehn JM
    Langmuir; 2006 Aug; 22(18):7579-86. PubMed ID: 16922536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of magnetic nanoparticles in evaporating solution.
    Ku J; Aruguete DM; Alivisatos AP; Geissler PL
    J Am Chem Soc; 2011 Feb; 133(4):838-48. PubMed ID: 21158454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deposition of magnetic colloidal particles on graphite and mica surfaces driven by solvent evaporation.
    Mutch KJ; Koutsos V; Camp PJ
    Langmuir; 2006 Jun; 22(13):5611-6. PubMed ID: 16768484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphole modified pentathienoacene: synthesis, electronic properties and self-assembly.
    Wan JH; Fang WF; Li YB; Xiao XQ; Zhang LH; Xu Z; Peng JJ; Lai GQ
    Org Biomol Chem; 2012 Feb; 10(7):1459-66. PubMed ID: 22218422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of evaporated nickel nanoparticles with highly oriented pyrolytic graphite: Back-bonding to surface defects, as studied by X-ray photoelectron spectroscopy.
    Yang DQ; Sacher E
    J Phys Chem B; 2005 Oct; 109(41):19329-34. PubMed ID: 16853496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time tracking of superparamagnetic nanoparticle self-assembly.
    Siffalovic P; Majkova E; Chitu L; Jergel M; Luby S; Capek I; Satka A; Timmann A; Roth SV
    Small; 2008 Dec; 4(12):2222-8. PubMed ID: 19003821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.