BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 20038169)

  • 1. High uptakes of methane in Li-doped 3D covalent organic frameworks.
    Lan J; Cao D; Wang W
    Langmuir; 2010 Jan; 26(1):220-6. PubMed ID: 20038169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations.
    Lan J; Cao D; Wang W; Smit B
    ACS Nano; 2010 Jul; 4(7):4225-37. PubMed ID: 20568707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Li-doped fullerene-intercalated phthalocyanine covalent organic frameworks designed for hydrogen storage.
    Guo JH; Zhang H; Miyamoto Y
    Phys Chem Chem Phys; 2013 Jun; 15(21):8199-207. PubMed ID: 23609981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.
    Furukawa H; Yaghi OM
    J Am Chem Soc; 2009 Jul; 131(25):8875-83. PubMed ID: 19496589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment.
    Mendoza-Cortés JL; Han SS; Furukawa H; Yaghi OM; Goddard WA
    J Phys Chem A; 2010 Oct; 114(40):10824-33. PubMed ID: 20845983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High H2 uptake in Li-, Na-, K-metalated covalent organic frameworks and metal organic frameworks at 298 K.
    Mendoza-Cortés JL; Han SS; Goddard WA
    J Phys Chem A; 2012 Feb; 116(6):1621-31. PubMed ID: 22188543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent organic frameworks as exceptional hydrogen storage materials.
    Han SS; Furukawa H; Yaghi OM; Goddard WA
    J Am Chem Soc; 2008 Sep; 130(35):11580-1. PubMed ID: 18683924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of covalent organic frameworks for methane storage.
    Mendoza-Cortes JL; Pascal TA; Goddard WA
    J Phys Chem A; 2011 Dec; 115(47):13852-7. PubMed ID: 21992457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials.
    Cao D; Lan J; Wang W; Smit B
    Angew Chem Int Ed Engl; 2009; 48(26):4730-3. PubMed ID: 19466727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles study of hydrogen adsorption in metal-doped COF-10.
    Wu MM; Wang Q; Sun Q; Jena P; Kawazoe Y
    J Chem Phys; 2010 Oct; 133(15):154706. PubMed ID: 20969418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation of the adsorption of light gases in covalent organic frameworks.
    Garberoglio G
    Langmuir; 2007 Nov; 23(24):12154-8. PubMed ID: 17956137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites.
    Wu H; Zhou W; Yildirim T
    J Am Chem Soc; 2009 Apr; 131(13):4995-5000. PubMed ID: 19275154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium doping on 2D squaraine-bridged covalent organic polymers for enhancing adsorption properties: a theoretical study.
    Chen W; Huang L; Yi X; Zheng A
    Phys Chem Chem Phys; 2018 Feb; 20(9):6487-6499. PubMed ID: 29445809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of hydrogen storage capacity of metal-organic and covalent-organic frameworks by spillover.
    Suri M; Dornfeld M; Ganz E
    J Chem Phys; 2009 Nov; 131(17):174703. PubMed ID: 19895031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designed synthesis of 3D covalent organic frameworks.
    El-Kaderi HM; Hunt JR; Mendoza-Cortés JL; Côté AP; Taylor RE; O'Keeffe M; Yaghi OM
    Science; 2007 Apr; 316(5822):268-72. PubMed ID: 17431178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials.
    Thomas KM
    Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen storage enhanced in Li-doped carbon replica of zeolites: a possible route to achieve fuel cell demand.
    Roussel T; Bichara C; Gubbins KE; Pellenq RJ
    J Chem Phys; 2009 May; 130(17):174717. PubMed ID: 19425808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Li(12)Si(60)H(60) fullerene composite: a promising hydrogen storage medium.
    Lan J; Cao D; Wang W
    ACS Nano; 2009 Oct; 3(10):3294-300. PubMed ID: 19761195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal@COFs: covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material.
    Kalidindi SB; Oh H; Hirscher M; Esken D; Wiktor C; Turner S; Van Tendeloo G; Fischer RA
    Chemistry; 2012 Aug; 18(35):10848-56. PubMed ID: 22886887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Covalent Organic Framework that Exceeds the DOE 2015 Volumetric Target for H2 Uptake at 298 K.
    Mendoza-Cortes JL; Goddard WA; Furukawa H; Yaghi OM
    J Phys Chem Lett; 2012 Sep; 3(18):2671-5. PubMed ID: 26295890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.