These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 20038587)
41. Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea. Finn MW; Tabita FR J Bacteriol; 2003 May; 185(10):3049-59. PubMed ID: 12730164 [TBL] [Abstract][Full Text] [Related]
42. Protein engineering of Rubisco. Brändén CI; Lindqvist Y; Schneider G Acta Crystallogr B; 1991 Dec; 47 ( Pt 6)():824-35. PubMed ID: 1772628 [TBL] [Abstract][Full Text] [Related]
43. Photoheterotrophic Assimilation of Valerate and Associated Polyhydroxyalkanoate Production by Bayon-Vicente G; Zarbo S; Deutschbauer A; Wattiez R; Leroy B Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651203 [TBL] [Abstract][Full Text] [Related]
45. RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha. Satagopan S; Tabita FR FEBS J; 2016 Aug; 283(15):2869-80. PubMed ID: 27261087 [TBL] [Abstract][Full Text] [Related]
46. Evidence that some dinoflagellates contain a ribulose-1,5-bisphosphate carboxylase/oxygenase related to that of the alpha-proteobacteria. Whitney SM; Shaw DC; Yellowlees D Proc Biol Sci; 1995 Mar; 259(1356):271-5. PubMed ID: 7740046 [TBL] [Abstract][Full Text] [Related]
47. Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RubisCO) Is Essential for Growth of the Methanotroph Methylococcus capsulatus Strain Bath. Henard CA; Wu C; Xiong W; Henard JM; Davidheiser-Kroll B; Orata FD; Guarnieri MT Appl Environ Microbiol; 2021 Aug; 87(18):e0088121. PubMed ID: 34288705 [TBL] [Abstract][Full Text] [Related]
48. Oxygenation mechanism of ribulose-bisphosphate carboxylase/oxygenase. Structure and origin of 2-carboxytetritol 1,4-bisphosphate, a novel O2-dependent side product generated by a site-directed mutant. Harpel MR; Serpersu EH; Lamerdin JA; Huang ZH; Gage DA; Hartman FC Biochemistry; 1995 Sep; 34(35):11296-306. PubMed ID: 7669788 [TBL] [Abstract][Full Text] [Related]
50. Induction of carbon monoxide dehydrogenase to facilitate redox balancing in a ribulose bisphosphate carboxylase/oxygenase-deficient mutant strain of Rhodospirillum rubrum. Joshi HM; Tabita FR Arch Microbiol; 2000 Mar; 173(3):193-9. PubMed ID: 10763751 [TBL] [Abstract][Full Text] [Related]
51. Evidence supporting lysine 166 of Rhodospirillum rubrum ribulosebisphosphate carboxylase as the essential base which initiates catalysis. Lorimer GH; Hartman FC J Biol Chem; 1988 May; 263(14):6468-71. PubMed ID: 3129424 [TBL] [Abstract][Full Text] [Related]
52. Aerobic-anaerobic transition boosts poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in Rhodospirillum rubrum: the key role of carbon dioxide. Godoy MS; de Miguel SR; Prieto MA Microb Cell Fact; 2023 Mar; 22(1):47. PubMed ID: 36899367 [TBL] [Abstract][Full Text] [Related]
53. Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria. Tsai YC; Lapina MC; Bhushan S; Mueller-Cajar O Nat Commun; 2015 Nov; 6():8883. PubMed ID: 26567524 [TBL] [Abstract][Full Text] [Related]
54. [Acid-soluble nucleotides of the phototrophic bacterium Rhodospirillum rubrum during growth in light and in darkness]. Shadi A; Mansurova SE; Cherniad'ev II; Kulaev IS Mikrobiologiia; 1975; 44(2):206-9. PubMed ID: 818480 [TBL] [Abstract][Full Text] [Related]
55. Ribulose 1,5-bisphosphate carboxylase. Effect on the catalytic properties of changing methionine-330 to leucine in the Rhodospirillum rubrum enzyme. Terzaghi BE; Laing WA; Christeller JT; Petersen GB; Hill DF Biochem J; 1986 May; 235(3):839-46. PubMed ID: 3092806 [TBL] [Abstract][Full Text] [Related]
56. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-mediated de novo synthesis of glycolate-based polyhydroxyalkanoate in Escherichia coli. Matsumoto K; Saito J; Yokoo T; Hori C; Nagata A; Kudoh Y; Ooi T; Taguchi S J Biosci Bioeng; 2019 Sep; 128(3):302-306. PubMed ID: 30987875 [TBL] [Abstract][Full Text] [Related]
57. Differential accumulation of form I RubisCO in Rhodopseudomonas palustris CGA010 under Photoheterotrophic growth conditions with reduced carbon sources. Joshi GS; Romagnoli S; Verberkmoes NC; Hettich RL; Pelletier D; Tabita FR J Bacteriol; 2009 Jul; 191(13):4243-50. PubMed ID: 19376869 [TBL] [Abstract][Full Text] [Related]
58. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids. Rudolf C; Grammel H Enzyme Microb Technol; 2012 Apr; 50(4-5):238-46. PubMed ID: 22418264 [TBL] [Abstract][Full Text] [Related]
59. Derepression of the synthesis of D-ribulose 1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. Sarles LS; Tabita FR J Bacteriol; 1983 Jan; 153(1):458-64. PubMed ID: 6401286 [TBL] [Abstract][Full Text] [Related]
60. Directed evolution of rubisco in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme. Mueller-Cajar O; Morell M; Whitney SM Biochemistry; 2007 Dec; 46(49):14067-74. PubMed ID: 18004873 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]